Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2063-2024
https://doi.org/10.5194/wes-9-2063-2024
Research article
 | 
05 Nov 2024
Research article |  | 05 Nov 2024

Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements

Ali Dibaj, Mostafa Valavi, and Amir R. Nejad

Related authors

Investigating Lab-scaled Offshore Wind Aerodynamic Testing Failure and Developing Solutions for Early Anomaly Detections
Yuksel R. Alkarem, Ian Ammerman, Kimberly Huguenard, Richard W. Kimball, Babak Hejrati, Amrit Verma, Amir R. Nejad, Reza Hashemi, and Stephan Grilli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-31,https://doi.org/10.5194/wes-2025-31, 2025
Preprint under review for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary
On the modeling errors of digital twins for load monitoring and fatigue assessment in wind turbine drivetrains
Felix C. Mehlan and Amir R. Nejad
Wind Energ. Sci., 10, 417–433, https://doi.org/10.5194/wes-10-417-2025,https://doi.org/10.5194/wes-10-417-2025, 2025
Short summary
On reliability design and code calibration of wind turbine blade bearings under extreme wind conditions
Ashkan Rezaei and Amir Rasekhi Nejad
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-186,https://doi.org/10.5194/wes-2024-186, 2025
Preprint under review for WES
Short summary
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
A machine-learning-based approach for active monitoring of blade pitch misalignment in wind turbines
Sabrina Milani, Jessica Leoni, Stefano Cacciola, Alessandro Croce, and Mara Tanelli
Wind Energ. Sci., 10, 497–510, https://doi.org/10.5194/wes-10-497-2025,https://doi.org/10.5194/wes-10-497-2025, 2025
Short summary
On the modeling errors of digital twins for load monitoring and fatigue assessment in wind turbine drivetrains
Felix C. Mehlan and Amir R. Nejad
Wind Energ. Sci., 10, 417–433, https://doi.org/10.5194/wes-10-417-2025,https://doi.org/10.5194/wes-10-417-2025, 2025
Short summary
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024,https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024,https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024,https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary

Cited articles

Ágoston, K.: Fault Detection of the Electrical Motors Based on Vibration Analysis, 8th International Conference Interdisciplinarity in Engineering, INTER-ENG 2014, 9–10 October 2014, Tirgu Mures, Romania, Proc. Tech., 19, 547–553, https://doi.org/10.1016/j.protcy.2015.02.078, 2015. a
Ali, M. Z., Shabbir, M. N. S. K., Liang, X., Zhang, Y., and Hu, T.: Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals, IEEE T. Ind. Appl., 55, 2378–2391, https://doi.org/10.1109/TIA.2019.2895797, 2019. a
Bernier, S., Merkhouf, A., and Al-Haddad, K.: Stray flux and air gap flux experimental measurement and analysis in large hydro generators, Proceedings – 2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2023, Newcastle upon Tyne, England, 13–14 April 2023, 1–6, https://doi.org/10.1109/WEMDCD55819.2023.10110944, 2023. a
Borchersen, A. B. and Kinnaert, M.: Model-based fault detection for generator cooling system in wind turbines using SCADA data, Wind Energy, 19, 593–606, 2016. a, b
Cai, B., Hao, K., Wang, Z., Yang, C., Kong, X., Liu, Z., Ji, R., and Liu, Y.: Data-driven early fault diagnostic methodology of permanent magnet synchronous motor, Expert Syst. Appl., 177, 115000, https://doi.org/10.1016/j.eswa.2021.115000, 2021. a
Download
Short summary
This study emphasizes the need for effective condition monitoring in permanent magnet offshore wind generators to tackle issues like demagnetization and eccentricity. Utilizing a machine learning model and high-resolution measurements, we explore methods of early fault detection. Our findings indicate that flux monitoring with affordable, easy-to-install stray flux sensors with frequency information offers a promising fault detection strategy for large megawatt-scale offshore wind generators.
Share
Altmetrics
Final-revised paper
Preprint