Articles | Volume 10, issue 12
https://doi.org/10.5194/wes-10-3045-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-3045-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing the impact of aeroelastic model fidelity on control co-design optimization of floating offshore wind turbines
Robert Behrens de Luna
CORRESPONDING AUTHOR
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
Francesco Papi
Department of Industrial Engineering, University of Florence, via di Santa Marta 3, 50139 Florence, Italy
David Marten
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
Christian Oliver Paschereit
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
Related authors
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024, https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary
Short summary
A novel hydrodynamic module of QBlade is validated on three floating offshore wind turbine concepts with experiments and two widely used simulation tools. Further, a recently proposed method to enhance the prediction of slowly varying drift forces is adopted and tested in varying met-ocean conditions. The hydrodynamic capability of QBlade matches the current state of the art and demonstrates significant improvement regarding the prediction of slowly varying drift forces with the enhanced model.
Francesco Papi, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-257, https://doi.org/10.5194/wes-2025-257, 2025
Preprint under review for WES
Short summary
Short summary
The paper presents an open-access database of aerodynamic polars for a wide range of airfoils, relevant for wind turbine design and simulation. It includes lift, drag, and moment coefficients for multiple Reynolds and Mach numbers. Coefficients are computed with CFD for fully turbulent and free transition boundary layers, as well as for a blend of the two. Beyond-stall extrapolation models are calibrated via a number of high-fidelity calculations at various angles of attack in separated flow.
Stefano Cioni, Francesco Papi, Pier Francesco Melani, Alessandro Fontanella, Agnese Firpo, Andrea Giuseppe Sanvito, Giacomo Persico, Vincenzo Dossena, Sara Muggiasca, Marco Belloli, and Alessandro Bianchini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-149, https://doi.org/10.5194/wes-2025-149, 2025
Preprint under review for WES
Short summary
Short summary
A multi-fidelity approach is leveraged to investigate the capabilities of engineering models to capture the wake dynamics of a wind turbine model under imposed motion. Differently from previous studies, many more different operating conditions have investigated, including surge, pitch, yaw and wind-wave misalignment cases; moreover, numerical methos are here consistently applied to the same test cases, which are part of the first experimental round of the NETTUNO project.
Leonardo Pagamonci, Francesco Papi, Gabriel Cojocaru, Marco Belloli, and Alessandro Bianchini
Wind Energ. Sci., 10, 1707–1736, https://doi.org/10.5194/wes-10-1707-2025, https://doi.org/10.5194/wes-10-1707-2025, 2025
Short summary
Short summary
The study presents a critical analysis using wind tunnel experiments and large-eddy simulations aimed at quantifying to what extent turbulence affects the wake structures of a floating turbine undergoing large motions. Analyses show that, whenever realistic turbulence comes into play, only small gains in terms of wake recovery are noticed in comparison to bottom-fixed turbines, suggesting the absence of hypothesized superposition effects between inflow and platform motion.
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci., 10, 1369–1387, https://doi.org/10.5194/wes-10-1369-2025, https://doi.org/10.5194/wes-10-1369-2025, 2025
Short summary
Short summary
This paper investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Alessandro Fontanella, Stefano Cioni, Francesco Papi, Sara Muggiasca, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-106, https://doi.org/10.5194/wes-2025-106, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study explores how the movement of floating wind turbines affects nearby turbines. Using wind tunnel experiments, we found that certain motions of an upstream turbine can improve the energy produced by a downstream one and change the forces it experiences. These effects depend on how the turbines are spaced and aligned. Our results show that the motion of floating turbines plays a key role in how future offshore wind farms should be designed and operated.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024, https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary
Short summary
A novel hydrodynamic module of QBlade is validated on three floating offshore wind turbine concepts with experiments and two widely used simulation tools. Further, a recently proposed method to enhance the prediction of slowly varying drift forces is adopted and tested in varying met-ocean conditions. The hydrodynamic capability of QBlade matches the current state of the art and demonstrates significant improvement regarding the prediction of slowly varying drift forces with the enhanced model.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022, https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Short summary
This paper investigates the potentials and the limitations of mini Gurney flaps and their combination with vortex generators for improved rotor blade performance of wind turbines. These small passive add-ons are installed in order to increase the annual energy production by mitigating the effects of both early separation toward the root region and surface erosion toward the tip region of the blade. As such, this study contributes to the reliable and long-term generation of renewable energy.
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Short summary
This paper compares different vortex identification methods to evaluate their suitability to study the tip vortices of a wind turbine. The assessment is done through experimental data from the wake of a wind turbine model. Results show comparability in some aspects as well as significant differences, providing evidence to justify further comparisons. Therefore, this study proves that the selection of the most suitable postprocessing methods of tip vortex data is pivotal to ensure robust results.
Sebastian Perez-Becker, David Marten, and Christian Oliver Paschereit
Wind Energ. Sci., 6, 791–814, https://doi.org/10.5194/wes-6-791-2021, https://doi.org/10.5194/wes-6-791-2021, 2021
Short summary
Short summary
Active trailing edge flaps can potentially enable further increases in wind turbine sizes without the disproportionate increase in loads, thus reducing the cost of wind energy even further. Extreme loads and critical deflections of the turbine blade are design-driving issues that can effectively be reduced by flaps. This paper considers the flap hinge moment as an input sensor for a flap controller that reduces extreme loads and critical deflections of the blade in turbulent wind conditions.
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Short summary
This paper presents two methods on how to estimate the lift force that is created by a wing. These methods were experimentally assessed in a wind tunnel. Furthermore, an active trailing-edge flap, as seen on airplanes for example, is used to alleviate fluctuating loads that are created within the employed wind tunnel. Thereby, an active flow control device that can potentially serve on wind turbines to lower fatigue or lower the material used for the blades is examined.
Rodrigo Soto-Valle, Sirko Bartholomay, Jörg Alber, Marinos Manolesos, Christian Navid Nayeri, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 1771–1792, https://doi.org/10.5194/wes-5-1771-2020, https://doi.org/10.5194/wes-5-1771-2020, 2020
Short summary
Short summary
In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations.
Cited articles
Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a, b
Abbas, N. J., Jasa, J., Zalkind, D. S., Wright, A., and Pao, L.: Control Co-Design of a Floating Offshore Wind Turbine, Applied Energy, 353, 122036, https://doi.org/10.1016/j.apenergy.2023.122036, 2024. a, b, c
Bayat, S., Lee, Y. H., and Allison, J. T.: Nested control co-design of a spar buoy horizontal-axis floating offshore wind turbine, Ocean Eng., 328, 121037, https://doi.org/10.1016/j.oceaneng.2025.121037, 2025. a
Behrens de Luna, R., Marten, D., Barlas, T., Horcas, S. G., Ramos-García, N., Li, A., and Paschereit, C. O.: Comparison of different fidelity aerodynamic solvers on the IEA 10 MW turbine including novel tip extension geometries, Journal of Physics: Conference Series, 2265, 032002, https://doi.org/10.1088/1742-6596/2265/3/032002, 2022. a
Behrens de Luna, R., Perez-Becker, S., Saverin, J., Marten, D., Papi, F., Ducasse, M.-L., Bonnefoy, F., Bianchini, A., and Paschereit, C.-O.: Quantifying the impact of modeling fidelity on different substructure concepts for floating offshore wind turbines – Part 1: Validation of the hydrodynamic module QBlade-Ocean, Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024, 2024. a, b, c
Bergua, R., Robertson, A., Jonkman, J., Branlard, E., Fontanella, A., Belloli, M., Schito, P., Zasso, A., Persico, G., Sanvito, A., Amet, E., Brun, C., Campaña-Alonso, G., Martín-San-Román, R., Cai, R., Cai, J., Qian, Q., Maoshi, W., Beardsell, A., Pirrung, G., Ramos-García, N., Shi, W., Fu, J., Corniglion, R., Lovera, A., Galván, J., Nygaard, T. A., dos Santos, C. R., Gilbert, P., Joulin, P.-A., Blondel, F., Frickel, E., Chen, P., Hu, Z., Boisard, R., Yilmazlar, K., Croce, A., Harnois, V., Zhang, L., Li, Y., Aristondo, A., Mendikoa Alonso, I., Mancini, S., Boorsma, K., Savenije, F., Marten, D., Soto-Valle, R., Schulz, C. W., Netzband, S., Bianchini, A., Papi, F., Cioni, S., Trubat, P., Alarcon, D., Molins, C., Cormier, M., Brüker, K., Lutz, T., Xiao, Q., Deng, Z., Haudin, F., and Goveas, A.: OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure, Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, 2023. a, b
Boorsma, K. and Schepers, J. G.: New MEXICO Experiment, Preliminary Overview, ECN publication ECN-E–14-048, ECN Wind Energy, https://publications.ecn.nl/ECN-E--14-048 (last access: 15 December 2025), 2014. a
Boorsma, K., Hartvelt, M., and Orsi, L.: Application of the lifting line vortex wake method to dynamic load case simulations, Journal of Physics: Conference Series, 753, 022030, https://doi.org/10.1088/1742-6596/753/2/022030, 2016. a
Boorsma, K., Wenz, F., Lindenburg, K., Aman, M., and Kloosterman, M.: Validation and accommodation of vortex wake codes for wind turbine design load calculations, Wind Energ. Sci., 5, 699–719, https://doi.org/10.5194/wes-5-699-2020, 2020. a, b
Bortolotti, P., Bay, C., Barter, G., Gaertner, E., Dykes, K., McWilliam, M., Friis-Moller, M., Molgaard Pedersen, M., and Zahle, F.: System Modeling Frameworks for Wind Turbines and Plants: Review and Requirements Specifications, Tech. Rep. NREL/TP-5000-82621, National Renewable Energy Laboratory, Golden, CO, https://doi.org/10.2172/1868328, 2022. a
Bortolotti, P., Chetan, M., Branlard, E., Jonkman, J., Platt, A., Slaughter, D., and Rinker, J.: Wind Turbine Aeroelastic Stability in OpenFAST, Journal of Physics: Conference Series, 2767, 022018, https://doi.org/10.1088/1742-6596/2767/2/022018, 2024. a
Branlard, E., Jonkman, B., Pirrung, G. R., Dixon, K., and Jonkman, J.: Dynamic inflow and unsteady aerodynamics models for modal and stability analyses in OpenFAST, Journal of Physics: Conference Series, 2265, 032044, https://doi.org/10.1088/1742-6596/2265/3/032044, 2022. a
Buhl Jr., M.: New Empirical Relationship between Thrust Coefficient and Induction Factor for the Turbulent Windmill State, Technical Report NREL/TP-500-36834, National Renewable Energy Laboratory, Golden, CO, USA, https://doi.org/10.2172/15016819, 2005. a
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Wind Energy Handbook, 1st edn., John Wiley & Sons, ISBNs 0-471-48997-2, 2001. a
Collier, W., Ors, D., Barlas, T., Zahle, F., Bortolotti, P., Marten, D., Jensen, C. S. L., Branlard, E., Zalkind, D., and Lønbæk, K.: Aeroelastic code comparison using the IEA 22 MW reference turbine, Journal of Physics: Conference Series, 2767, 052042, https://doi.org/10.1088/1742-6596/2767/5/052042, 2024. a
Feil, R., Pflumm, T., Bortolotti, P., and Morandini, M.: A cross-sectional aeroelastic analysis and structural optimization tool for slender composite structures, Composite Structures, 253, 112755, https://doi.org/10.1016/j.compstruct.2020.112755, 2020. a
Garcia-Sanz, M.: Control Co-Design: An engineering game changer, Advanced Control for Applications: Engineering and Industrial Systems, 1, e18, https://doi.org/10.1002/adc2.18, 2019. a, b, c
Ghigo, A., Cottura, L., Caradonna, R., Bracco, G., and Mattiazzo, G.: Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm, Journal of Marine Science and Engineering, 8, https://doi.org/10.3390/jmse8110835, 2020. a
Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A.: OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization, Structural and Multidisciplinary Optimization, 59, 1075–1104, https://doi.org/10.1007/s00158-019-02211-z, 2019. a
Guo, F., Gao, Z., and Schlipf, D.: TorqTwin – An open-source reference multibody modeling framework for wind turbine structural dynamics, Renewable Energy, 235, 121268, https://doi.org/10.1016/j.renene.2024.121268, 2024. a, b
Hamby, D. M.: A review of techniques for parameter sensitivity analysis of environmental models, Environ. Monit. Assess., 32, 135–154, https://doi.org/10.1007/BF00547132, 1994. a
Hansen, M. O. L.: Aerodynamics of Wind Turbines, Earthscan, London, 2nd edn., ISBN 978-1-84407-438-9, 2008. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hauptmann, S., Bülk, M., Schön, L., Erbslöh, S., Boorsma, K., Grasso, F., Kühn, M., and Cheng, P. W.: Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines, Journal of Physics: Conference Series, 555, 012050, https://doi.org/10.1088/1742-6596/555/1/012050, 2014. a
Hodges, D.: Nonlinear Composite Beam Theory, https://doi.org/10.2514/4.866821, 2006. a
International Electrotechnical Commission: Wind turbines – Part 1: Design requirements, standard No. IEC 61400-1, 4th ed. Geneva, Switzerland, ISBN 9782832279724, 2019. a
Jasa, J., Bortolotti, P., Zalkind, D., and Barter, G.: Effectively using multifidelity optimization for wind turbine design, Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022, 2022. a
Johnson, S. G.: The NLopt nonlinear-optimization package, GitHub [code], https://github.com/stevengj/nlopt (last access: 15 December 2025), 2007. a
Jonkman, J.: Definition of the Floating System for Phase IV of OC3, NREL technical report, https://doi.org/10.2172/979456, 2010. a
Jonkman, J. M. and Buhl Jr., M. L.: FAST User's Guide – Updated August 2005, Technical Report NREL/TP-500-38230, National Renewable Energy Laboratory, Golden, CO, USA, https://doi.org/10.2172/15020796, 2005. a
Larsen, T. J. and Hanson, T. D.: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, Journal of Physics: Conference Series, 75, 012073, https://doi.org/10.1088/1742-6596/75/1/012073, 2007. a
Madsen, H. A., Larsen, T. J., Pirrung, G. R., Li, A., and Zahle, F.: Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact, Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, 2020. a, b
Mancini, S., Boorsma, K., Schepers, G., and Savenije, F.: A comparison of dynamic inflow models for the blade element momentum method, Wind Energ. Sci., 8, 193–210, https://doi.org/10.5194/wes-8-193-2023, 2023. a
Martins, J. R. R. A. and Ning, A.: Engineering Design Optimization, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781108980647, 2022. a
Morandini, M., Chierichetti, M., and Mantegazza, P.: Characteristic behavior of prismatic anisotropic beam via generalized eigenvectors, International Journal of Solids and Structures, 47, 1327–1337, https://doi.org/10.1016/j.ijsolstr.2010.01.017, 2010. a
NREL: BeamDyn Module, GitHub [code], https://github.com/OpenFAST/openfast/tree/main/modules/beamdyn, last access: 11 November 2025a. a
NREL: OpenFAST, GitHub [code], https://github.com/OpenFAST/openfast, last access: 11 November 2025c. a
NREL: ROSC O. Version 2.9.7, GitHub [code], https://github.com/NREL/ROSCO, last access: 11 November 2025d. a
NREL: SONATA, GitHub [code], https://github.com/WISDEM/SONATA/tree/master, last access: 11 November 2025e. a
NREL: WEIS, GitHub [code], https://github.com/WISDEM/WEIS, last access: 11 November 2025f. a
NREL: WISDEM, GitHub [code], https://github.com/WISDEM/WISDEM, last access: 11 November 2025g. a
NREL: pCrunch, GitHub [code], https://github.com/NREL/pCrunch, last access: 11 November 2025h. a
NREL: pyHAMS, GitHub [code], https://github.com/WISDEM/pyHAMS, last access: 11 November 2025i. a
Ojo, A., Collu, M., and Coraddu, A.: Multidisciplinary design analysis and optimization of floating offshore wind turbine substructures: A review, Ocean Eng., 266, 112727, https://doi.org/10.1016/j.oceaneng.2022.112727, 2022. a
Papi, F., Perignon, Y., and Bianchini, A.: Derivation of Met–Ocean Conditions for the Simulation of Floating Wind Turbines: A European Case Study, Journal of Physics: Conference Series, 2385, 012117, https://doi.org/10.1088/1742-6596/2385/1/012117, 2022. a
Papi, F., Jonkman, J., Robertson, A., and Bianchini, A.: Going beyond BEM with BEM: an insight into dynamic inflow effects on floating wind turbines, Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, 2024a. a
Papi, F., Troise, G., Behrens de Luna, R., Saverin, J., Perez-Becker, S., Marten, D., Ducasse, M.-L., and Bianchini, A.: Quantifying the impact of modeling fidelity on different substructure concepts – Part 2: Code-to-code comparison in realistic environmental conditions, Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, 2024b. a, b, c
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, 2020. a, b, c, d
Powell, M. J. D.: A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, https://api.semanticscholar.org/CorpusID:118045691 (last access: 15 December 2025), 1994. a
QBlade: https://docs.qblade.org/, last access: 11 November 2025. a
Ramachandran, G. K. V., Robertson, A., Jonkman, J. M., and Masciola, M. D.: Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines, in: Proceedings of the 23rd International Ocean, Offshore and Polar Engineering Conference (ISOPE 2013), NREL/CP-5000-58098, Anchorage, Alaska, USA, conference Paper NREL/CP-5000-58098; to be presented 30 June–5 July 2013, https://docs.nrel.gov/docs/fy13osti/58098.pdf (last access: 15 December 2025), 2013. a
Ramos-García, N., Kontos, S., Pegalajar-Jurado, A., González Horcas, S., and Bredmose, H.: Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery, Wind Energy, 25, 468–504, https://doi.org/10.1002/we.2682, 2022. a
Nielsen, F. G., Hanson, T. D., and Skaare, B.: Integrated Dynamic Analysis of Floating Offshore Wind Turbines, International Conference on Offshore Mechanics and Arctic Engineering, https://doi.org/10.1115/OMAE2006-92291, 2006. a
Snel, H. and Schepers, J. G.: Joint Investigation of Dynamic Inflow Effects and Implementation of an Engineering Method, Technical Report ECN-C-94-107, Energy Research Centre of the Netherlands (ECN), Petten, the Netherlands, https://www.osti.gov/etdeweb/biblio/53347 (last access: 15 December 2025), 1995. a
Stäblein, A. R.: Analysis and Design of Bend-Twist Coupled Wind Turbine Blades, Springer International Publishing, Cham, 67–80, https://doi.org/10.1007/978-3-319-39095-6_5, 2016. a, b, c
Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama, H., and Negrut, D.: Chrono: An Open Source Multi-physics Dynamics Engine, in: Lecture Notes in Computer Science, Springer International Publishing, 19–49, https://doi.org/10.1007/978-3-319-40361-8_2, 2016. a
TUM: SONATA, GitLab [code], https://gitlab.lrz.de/HTMWTUM/SONATA, last access: 11 November 2025. a
van der Veen, G., Couchman, I., and Bowyer, R.: Control of floating wind turbines, 3148–3153, https://doi.org/10.1109/ACC.2012.6315120, 2012. a
van Garrel, A.: Development of a Wind Turbine Aerodynamics Simulation Module, Tech. rep., https://doi.org/10.13140/RG.2.1.2773.8000, 2003. a
Veers, P., Bottasso, C., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, A., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems, Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, 2023. a, b
WEIS Documentation: https://weis.readthedocs.io/en/latest/index.html, last access: 11 November 2025. a
Yu, W., Zhou, S. T., Lemmer, F., and Cheng, P. W.: Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers, Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024, 2024. a
Zahle, F., Barlas, A., Lønbæk, K., Bortolotti, P., Zalkind, D., Wang, L., Labuschagne, C., Sethuraman, L., and Barter, G.: Definition of the IEA Wind 22-Megawatt Offshore Reference Wind Turbine, Technical University of Denmark, dTU Wind Energy Report E-0243 IEA Wind TCP Task 55, https://doi.org/10.11581/DTU.00000317, 2024a. a, b, c, d, e, f, g
Zahle, F., Barlas, T., Lønbæk, K., Bortolotti, P., Zalkind, D., Wang, L., Labuschagne, C., Sethuraman, L., Barter, G., and Marten, D.: IEAWindTask37/IEA-22-280-RWT: v1.0.1, Zenodo [code], https://doi.org/10.5281/zenodo.10944127, 2024b. a
Zalkind, D. and Bortolotti, P.: Control Co-Design Studies for a 22 MW Semisubmersible Floating Wind Turbine Platform, Journal of Physics: Conference Series, 2767, 082020, https://doi.org/10.1088/1742-6596/2767/8/082020, 2024. a, b, c, d
Zalkind, D., Abbas, N. J., Jasa, J., Wright, A., and Fleming, P.: Floating wind turbine control optimization, Journal of Physics: Conference Series, 2265, 042021, https://doi.org/10.1088/1742-6596/2265/4/042021, 2022. a, b, c, d
Zhao, X., Jiang, W., Liang, Z., and Zhao, Y.: Passive load reduction performance of bend-twist coupling in large flexible wind turbine blades, Composite Structures, 371, 119421, https://doi.org/10.1016/j.compstruct.2025.119421, 2025. a
Short summary
Floating offshore wind turbines make wind resources in deeper waters accessible. However, these systems are more complex and costly than fixed-bottom wind turbines and require further optimization to reduce cost. This study analyzed the effect of aeroelastic modeling fidelity on the design of the floater and the wind turbine controller. The results showed that an increase in fidelity resulted in lighter platforms, influenced controller parameters and led to lower costs overall.
Floating offshore wind turbines make wind resources in deeper waters accessible. However, these...
Altmetrics
Final-revised paper
Preprint