Articles | Volume 10, issue 4
https://doi.org/10.5194/wes-10-661-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.Flight guidance concept for the launching and landing phase of a flying wing used in an airborne wind energy system
Related subject area
Thematic area: Wind technologies | Topic: Airborne technology
A small-scale and autonomous testbed for three-line delta kites applied to airborne wind energy
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
System design and scaling trends for airborne wind energy
Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Wind Energ. Sci. Discuss.,
2024Revised manuscript accepted for WES
Wind Energ. Sci., 9, 2261–2282,
2024Wind Energ. Sci. Discuss.,
2024Revised manuscript accepted for WES
Wind Energ. Sci., 9, 2195–2215,
2024Wind Energ. Sci., 9, 1323–1344,
2024Cited articles
Ahrens, U., Diehl, M., and Schmehl, R.: Airborne Wind Energy, Springer, https://doi.org/10.1007/978-3-642-39965-7, 2013. a
AWEurope: SkySails Group validates World's First Performance Curve for AWE, https://airbornewindeurope.org/aweurope-news/skysails-group-validates-worlds-first-performance-curve-for-airborne-wind-energy/ (last access: 23 March 2025), 2024. a
Bartel, C. K. and EnerKite: Innovativste Unternehmen: EnerKite – Stromerzeugung mit Flugdrachen, https://www.capital.de/wirtschaft-politik/innovativste-unternehmen–enerkite—stromerzeugung-mit-flugdrachen–34462104.html, last access: 11 December 2024. a
Brockhaus, R.: Flugregelung, Springer Nature, https://doi.org/10.1007/978-3-642-01443-7, 2010. a
Duda, D. F., Fuest, H., Islam, T., Ostermann, T., and Moormann, D.: Hybrid modeling approach for the tether of an airborne wind energy system, CEAS Aeronautical Journal, 13, 627–637, https://doi.org/10.1007/s13272-022-00581-7, 2022. a, b