Articles | Volume 10, issue 4
https://doi.org/10.5194/wes-10-779-2025
https://doi.org/10.5194/wes-10-779-2025
Research article
 | 
28 Apr 2025
Research article |  | 28 Apr 2025

Modular deep learning approach for wind farm power forecasting and wake loss prediction

Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen

Related authors

Condition monitoring of wind turbine drivetrains: State-of-the-art technologies, recent trends, and future outlook
Kayacan Kestel, Xavier Chesterman, Donatella Zappalá, Simon Watson, Mingxin Li, Edward Hart, James Carroll, Yolanda Vidal, Amir R. Nejad, Shawn Sheng, Yi Guo, Matthias Stammler, Florian Wirsing, Ahmed Saleh, Nico Gregarek, Thao Baszenski, Thomas Decker, Martin Knops, Georg Jacobs, Benjamin Lehmann, Florian König, Ines Pereira, Pieter-Jan Daems, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-168,https://doi.org/10.5194/wes-2025-168, 2025
Preprint under review for WES
Short summary
Leveraging signal processing and machine learning for automated fault detection in wind turbine drivetrains
Faras Jamil, Cédric Peeters, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci., 10, 1963–1978, https://doi.org/10.5194/wes-10-1963-2025,https://doi.org/10.5194/wes-10-1963-2025, 2025
Short summary
Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data
Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 1137–1152, https://doi.org/10.5194/wes-10-1137-2025,https://doi.org/10.5194/wes-10-1137-2025, 2025
Short summary
Scalable SCADA-driven Failure Prediction for Offshore Wind Turbines Using Autoencoder-Based NBM and Fleet-Median Filtering
Ivo Vervlimmeren, Xavier Chesterman, Timothy Verstraeten, Ann Nowé, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-49,https://doi.org/10.5194/wes-2025-49, 2025
Revised manuscript accepted for WES
Short summary
Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Preprint under review for WES
Short summary

Cited articles

Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, 2009. a, b
Becker, M., Allaerts, D., and van Wingerden, J. W.: FLORIDyn – A dynamic and flexible framework for real-time wind farm control, J. Phys. Conf. Ser., 2265, 032103, https://doi.org/10.1088/1742-6596/2265/3/032103, 2022. a
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind farm blockage and the consequences of neglecting its impact on energy production, Energies, 11, 1609, https://doi.org/10.3390/en11061609, 2018. a
Boersma, S., Doekemeijer, B. M., Gebraad, P. M., Fleming, P. A., Annoni, J., Scholbrock, A. K., Frederik, J. A., and van Wingerden, J.-W.: A tutorial on control-oriented modeling and control of wind farms, in: 2017 American control conference (ACC), Seattle, WA, USA, 24–26 May 2017, IEEE, 1–18, https://doi.org/10.23919/ACC.2017.7962923, 2017. a, b
Bossanyi, E. and Ruisi, R.: Axial induction controller field test at Sedini wind farm, Wind Energ. Sci., 6, 389–408, https://doi.org/10.5194/wes-6-389-2021, 2021. a
Download
Short summary
Wind farms are crucial for a sustainable energy future. However, their power can fluctuate significantly due to changing weather conditions, which complexly affect their power generation. This paper presents a novel machine-learning-based method to enhance wind farm power predictions, enabling improved power scheduling, trading and grid balancing. This makes wind power more valuable and easier to integrate into the energy system.
Share
Altmetrics
Final-revised paper
Preprint