Articles | Volume 11, issue 2
https://doi.org/10.5194/wes-11-373-2026
https://doi.org/10.5194/wes-11-373-2026
Research article
 | 
06 Feb 2026
Research article |  | 06 Feb 2026

A wind turbine digital shadow for complex inflow conditions

Hadi Hoghooghi and Carlo L. Bottasso

Related authors

Scaled testing of maximum-reserve active power control
Simone Tamaro, Davide Bortolin, Filippo Campagnolo, Franz V. Muehle, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-254,https://doi.org/10.5194/wes-2025-254, 2025
Preprint under review for WES
Short summary
A robust active power control algorithm to maximize wind farm power tracking margins in waked conditions
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 10, 2705–2728, https://doi.org/10.5194/wes-10-2705-2025,https://doi.org/10.5194/wes-10-2705-2025, 2025
Short summary
Adaptive economic wind turbine control
Abhinav Anand and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-101,https://doi.org/10.5194/wes-2025-101, 2025
Publication in WES not foreseen
Short summary
Wind farm inertia forecasting accounting for wake losses, control strategies, and operational constraints
Andre Thommessen, Abhinav Anand, Christoph M. Hackl, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-72,https://doi.org/10.5194/wes-2025-72, 2025
Revised manuscript under review for WES
Short summary
Economic lifetime-aware wind farm control
Abhinav Anand, Robert Braunbehrens, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-67,https://doi.org/10.5194/wes-2025-67, 2025
Revised manuscript under review for WES
Short summary

Cited articles

Abdallah, I., Tatsis, K., and Chatzi, E.: Fatigue assessment of a wind turbine blade when output from multiple aero-elastic simulators are available, Procedia Engineering, 199, 3170–3175, https://doi.org/10.1016/j.proeng.2017.09.509, x International Conference on Structural Dynamics, EURODYN 2017, 2017. a, b, c
Anand, A. and Bottasso, C. L.: Reducing Plant-Model Mismatch for Economic Model Predictive Control of Wind Turbine Fatigue by a Data-Driven Approach, in: 2023 American Control Conference (ACC), 14731479, https://doi.org/10.23919/ACC55779.2023.10156501, 2023. a, b, c
Bangalore, P., Letzgus, S., Karlsson, D., and Patriksson, M.: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox, Wind Energy, 20, 1421–1438, https://doi.org/10.1002/we.2102, 2017. a, b
Bernhammer, L. O., van Kuik, G. A., and De Breuker, R.: Fatigue and extreme load reduction of wind turbine components using smart rotors, Journal of Wind Engineering and Industrial Aerodynamics, 154, 84–95, https://doi.org/10.1016/j.jweia.2016.04.001, 2016. a
Bertelè, M., Bottasso, C. L., and Schreiber, J.: Wind inflow observation from load harmonics: initial steps towards a field validation, Wind Energy Science, 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, 2021. a, b
Download
Short summary
We formulate and demonstrate a new digital shadow (i.e., a virtual copy) for wind turbines. The digital shadow is designed in order to be capable of mirroring the response of the machine even in complex inflow conditions. Results from field measurements illustrate the ability of the shadow to estimate loads with good accuracy, even with minimal tuning.
Share
Altmetrics
Final-revised paper
Preprint