Articles | Volume 4, issue 3
Wind Energ. Sci., 4, 465–477, 2019
https://doi.org/10.5194/wes-4-465-2019
Wind Energ. Sci., 4, 465–477, 2019
https://doi.org/10.5194/wes-4-465-2019

Research article 09 Sep 2019

Research article | 09 Sep 2019

Field-test of wind turbine by voltage source converter

Nicolás Espinoza and Ola Carlson

Related subject area

Electricity conversion, forecasting, grid & market integration
Power fluctuations in high-installation- density offshore wind fleets
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021,https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
Mathieu Pichault, Claire Vincent, Grant Skidmore, and Jason Monty
Wind Energ. Sci., 6, 131–147, https://doi.org/10.5194/wes-6-131-2021,https://doi.org/10.5194/wes-6-131-2021, 2021
Short summary
North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind power installations
Matti Koivisto, Juan Gea-Bermúdez, Polyneikis Kanellas, Kaushik Das, and Poul Sørensen
Wind Energ. Sci., 5, 1705–1712, https://doi.org/10.5194/wes-5-1705-2020,https://doi.org/10.5194/wes-5-1705-2020, 2020
Short summary
Comparison of electrical collection topologies for multi-rotor wind turbines
Paul Pirrie, David Campos-Gaona, and Olimpo Anaya-Lara
Wind Energ. Sci., 5, 1237–1252, https://doi.org/10.5194/wes-5-1237-2020,https://doi.org/10.5194/wes-5-1237-2020, 2020
Short summary

Cited articles

Altın, M., Göksu, O., Teodorescu, R., Rodriguez, P., Jensen, B. B., and Helle, L.: Overview of recent grid codes for wind power integration, in: 2010 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 1152–1160, https://doi.org/10.1109/OPTIM.2010.5510521, 2010. a
Ausin, J. C., Gevers, D. N., and Andresen, B.: Fault ride-through capability test unit for wind turbines, Wind Energy, 11, 3–12, https://doi.org/10.1002/we.255, 2008. a, b, c
Beeckmann, A., Diedrichs, V., and Wachtel, S.: Evaluation of Wind Energy Converter Behavior during Network Faults – Limitations of Low Voltage Ride Through Test and Interpretation of the Test Results, in: 9th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Jade Hochschule, 2010. a, b
Blaabjerg, F. and Ma, K.: Future on Power Electronics for Wind Turbine Systems, IEEE J. Em. Sel. Top. P., 1, 139–152, https://doi.org/10.1109/JESTPE.2013.2275978, 2013. a
Bongiorno, M. and Thiringer, T.: A Generic DFIG Model for Voltage Dip Ride-Through Analysis, IEEE T. Energy Conver., 28, 76–85, https://doi.org/10.1109/TEC.2012.2222885, 2013. a
Download
Short summary
An important design criterion for the electric drive system of a wind turbine is the fulfilment of grid codes given by transmission system operators. The grid codes state how wind turbines/farms must behave when connected to the grid in normal and abnormal conditions. A type of testing equipment that comprises the use of fully-rated voltage source converter in back-to-back configuration for grid code testing is proposed. Test results of a 4 MW wind turbine and an 8 MW test equipment are shown.