Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-1941-2022
https://doi.org/10.5194/wes-7-1941-2022
Research article
 | 
30 Sep 2022
Research article |  | 30 Sep 2022

Multifidelity multiobjective optimization for wake-steering strategies

Julian Quick, Ryan N. King, Garrett Barter, and Peter E. Hamlington

Related authors

Reductions in wind farm main bearing rating lives resulting from wake impingement
Julian Quick, Edward Hart, Marcus Binder Nilsen, Rasmus Sode Lund, Jaime Liew, Piinshin Huang, Pierre-Elouan Rethore, Jonathan Keller, Wooyong Song, and Yi Guo
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-63,https://doi.org/10.5194/wes-2025-63, 2025
Preprint under review for WES
Short summary
Enabling efficient sizing of hybrid power plants: a surrogate-based approach to energy management system modeling
Charbel Assaad, Juan Pablo Murcia Leon, Julian Quick, Tuhfe Göçmen, Sami Ghazouani, and Kaushik Das
Wind Energ. Sci., 10, 559–578, https://doi.org/10.5194/wes-10-559-2025,https://doi.org/10.5194/wes-10-559-2025, 2025
Short summary
Offshore Wind Farm Layout Optimization Accounting for Participation to Secondary Reserve Markets
Thuy-Hai Nguyen, Julian Quick, Pierre-Elouan Réthoré, Jean-François Toubeau, Emmanuel De Jaeger, and François Vallée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-131,https://doi.org/10.5194/wes-2024-131, 2024
Revised manuscript accepted for WES
Short summary
Knowledge engineering for wind energy
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024,https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Gradient-based wind farm layout optimization with inclusion and exclusion zones
Javier Criado Risco, Rafael Valotta Rodrigues, Mikkel Friis-Møller, Julian Quick, Mads Mølgaard Pedersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 585–600, https://doi.org/10.5194/wes-9-585-2024,https://doi.org/10.5194/wes-9-585-2024, 2024
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Comparison of wind farm control strategies under realistic offshore wind conditions: turbine quantities of interest
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025,https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant
Peter Bachant, Peter Ireland, Brian Burrows, Chi Qiao, James Duncan, Danian Zheng, and Mohit Dua
Wind Energ. Sci., 9, 2235–2259, https://doi.org/10.5194/wes-9-2235-2024,https://doi.org/10.5194/wes-9-2235-2024, 2024
Short summary
A dynamic open-source model to investigate wake dynamics in response to wind farm flow control strategies
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-150,https://doi.org/10.5194/wes-2024-150, 2024
Revised manuscript accepted for WES
Short summary
Evaluating the potential of a wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024,https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary

Cited articles

Allen, J., Young, E., Bortolotti, P., King, R., and Barter, G.: Blade planform design optimization to enhance turbine wake control, Wind Energy, 25, 811–830, https://doi.org/10.1002/we.2699, 2022. a
Andersson, L. E. and Imsland, L.: Real-time optimization of wind farms using modifier adaptation and machine learning, Wind Energ. Sci., 5, 885–896, https://doi.org/10.5194/wes-5-885-2020, 2020. a, b, c
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a
Ariyarit, A. and Kanazaki, M.: Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems, Applied Sciences, 17, 1318, https://doi.org/10.3390/app7121318, 2017. a, b
Bortolotti, P., Tarrés, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, United States, https://doi.org//10.2172/1529216, 2019. a
Download
Short summary
Wake steering is an emerging wind power plant control strategy where upstream turbines are intentionally yawed out of alignment with the incoming wind, thereby steering wakes away from downstream turbines. Trade-offs between the gains in power production and fatigue loads induced by this control strategy are the subject of continuing investigation. In this study, we present an optimization approach for efficiently exploring the trade-offs between power and loading during wake steering.
Share
Altmetrics
Final-revised paper
Preprint