Articles | Volume 7, issue 2
https://doi.org/10.5194/wes-7-925-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-925-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A framework for simultaneous design of wind turbines and cable layout in offshore wind
DTU Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Nicolaos Antonio Cutululis
DTU Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Related authors
Juan-Andrés Pérez-Rúa, Mathias Stolpe, and Nicolaos Antonio Cutululis
Wind Energ. Sci., 8, 1453–1473, https://doi.org/10.5194/wes-8-1453-2023, https://doi.org/10.5194/wes-8-1453-2023, 2023
Short summary
Short summary
With the challenges of ensuring secure energy supplies and meeting climate targets, wind energy is on course to become the cornerstone of decarbonized energy systems. This work proposes a new method to optimize wind farms by means of smartly placing wind turbines within a given project area, leading to more green-energy generation. This method performs satisfactorily compared to state-of-the-art approaches in terms of the resultant annual energy production and other high-level metrics.
Carlo L. Bottasso, Sandrine Aubrun, Nicolaos A. Cutululis, Julia Gottschall, Athanasios Kolios, Jakob Mann, and Paul Veers
Wind Energ. Sci., 11, 347–348, https://doi.org/10.5194/wes-11-347-2026, https://doi.org/10.5194/wes-11-347-2026, 2026
Short summary
Short summary
This editorial celebrates the 10th anniversary of Wind Energy Science, reflecting on a decade of rapid scientific progress and the journal’s role in advancing fundamental, interdisciplinary research. It highlights key developments in wind energy, the importance of open science and academia–industry collaboration, and emerging challenges such as data sharing and artificial intelligence. Above all, it honors the research community that has shaped the journal and looks ahead to the next decade.
Mark O'Malley, Hannele Holttinen, Nicolaos Cutululis, Til Kristian Vrana, Jennifer King, Vahan Gevorgian, Xiongfei Wang, Fatemeh Rajaei-Najafabadi, and Andreas Hadjileonidas
Wind Energ. Sci., 9, 2087–2112, https://doi.org/10.5194/wes-9-2087-2024, https://doi.org/10.5194/wes-9-2087-2024, 2024
Short summary
Short summary
The rising share of wind power poses challenges to cost-effective integration while ensuring reliability. Balancing the needs of the power system and contributions of wind power is crucial for long-term value. Research should prioritize wind power advantages over competitors, focussing on internal challenges. Collaboration with other technologies is essential for addressing the fundamental objectives of power systems – maintaining reliable supply–demand balance at the lowest cost.
Juan-Andrés Pérez-Rúa, Mathias Stolpe, and Nicolaos Antonio Cutululis
Wind Energ. Sci., 8, 1453–1473, https://doi.org/10.5194/wes-8-1453-2023, https://doi.org/10.5194/wes-8-1453-2023, 2023
Short summary
Short summary
With the challenges of ensuring secure energy supplies and meeting climate targets, wind energy is on course to become the cornerstone of decarbonized energy systems. This work proposes a new method to optimize wind farms by means of smartly placing wind turbines within a given project area, leading to more green-energy generation. This method performs satisfactorily compared to state-of-the-art approaches in terms of the resultant annual energy production and other high-level metrics.
Cited articles
Amaral, L. and Castro, R.: Offshore wind farm layout optimization regarding
wake effects and electrical losses,
Eng. Appl. Artif. Intel., 60, 26–34, https://doi.org/10.1016/j.engappai.2017.01.010, 2017. a
Bortolotti, P., Tarrés, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind Task 37 on Systems Engineering in Wind Energy, WP2.1 Reference Wind Turbines, https://doi.org/10.2172/1529216, 2019. a
Brogna, R., Feng, J., Sørensen, J. N., Shen, W. Z., and Porté-Agel, F.:
A new wake model and comparison of eight algorithms for layout optimization
of wind farms in complex terrain, Appl. Eng., 259, 114189,
https://doi.org/10.1016/j.apenergy.2019.114189, 2020. a, b
BVG Associates, Recognis, and WindEurope: Our Energy Our Future, Tech.
rep., BVG Associates, edited by: Colin Walsh, WindEurope, https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Our-Energy-Our-Future.pdf (last access: 22 April 2022), 2019. a
Chandy, K. M. and Russell, R. A.: The Design or Multipoint Linkages in a
Teleprocessing Tree Network, IEEE T. Comput., C-21,
1062–1066, https://doi.org/10.1109/T-C.1972.223452, 1972. a
Dechter, R. and Pearl, J.: Generalized best-first search strategies and the
optimality of A*, J. ACM, 32, 505–536,
https://doi.org/10.1145/3828.3830, 1985. a
DTU Wind Energy: TOPFARM,
https://topfarm.pages.windenergy.dtu.dk/TopFarm2/index.html# (last access: 19 April 2022),
2018. a
DTU Wind Energy: DTU Cost Model,
https://topfarm.pages.windenergy.dtu.dk/TopFarm2/api_reference/dtucost.html (last access: 19 April 2022),
2021. a
Dykes, K., Rethore, P., Zahle, F., and Merz, K.: IEA Wind Task 37 Final
Proposal. Wind Energy Systems Engineering: Integrated RD&D, Tech. rep.,
International Energy Agency, 2015. a
Dykes, K., Hand, M., Stehly, T., Veers, P., Robinson, M., Lantz, E., and
Tusing, R.: Enabling the SMART Wind Power Plant of the Future Through
Science-Based Innovation, Tech. Rep. TP-5000-6812, NREL, https://doi.org/10.2172/1378902, 2017. a
Esau, L. R. and Williams, K. C.: On teleprocessing system design, Part II: A
method for approximating the optimal network, IBM Syst. J., 5,
142–147, https://doi.org/10.1147/sj.53.0142, 1966. a
Feng, J. and Shen, W. Z.: Solving the wind farm layout optimization problem
using random search algorithm, Renew. Energ., 78, 182–192,
https://doi.org/10.1016/j.renene.2015.01.005, 2015. a, b
Fischetti, M. and Pisinger, D.: Optimizing wind farm cable routing considering
power losses, Eur. J. Oper. Res., 270, 917–930,
https://doi.org/10.1016/j.ejor.2017.07.061, 2018. a
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.: Deep learning,
vol. 1, MIT press Cambridge, ISBN 9780262035613, 2016. a
Grady, S., Hussaini, M., and Abdullah, M. M.: Placement of wind turbines using
genetic algorithms, Renew. Energ., 30, 259–270,
https://doi.org/10.1016/j.renene.2004.05.007, 2005. a
Graf, P. A., Stewart, G., Lackner, M., Dykes, K., and Veers, P.:
High-Throughput Computation and the Applicability of Monte Carlo Integration
in Fatigue Load Estimation of Floating Offshore Wind Turbines, Wind Energy,
19, 861–872, https://doi.org/10.1002/we.1870, 2016. a
GWEC: Global Wind Report, Annual Market Update 2017, Tech. rep., GWEC,
https://www.researchgate.net/publication/324966225_GLOBAL_WIND_REPORT_-_Annual_Market_Update_2017 (last access: 19 April 2022),
2018. a
GWEC: Global Wind Report 2019, Tech. rep., GWEC,
https://gwec.net/global-wind-report-2019/ (last access: 19 April 2022),
2020a. a
GWEC: Global Offshore Wind Report 2020, Tech. rep., GWEC,
https://gwec.net/wp-content/uploads/2020/12/GWEC-Global-Offshore-Wind-Report-2020.pdf (last access: 19 April 2022),
2020b. a
Herbert-Acero, J., Probst, O., Réthoré, P.-E., Larsen, G., and
Castillo-Villar, K.: A Review of Methodological Approaches for the
Design and Optimization of Wind Farms, Energies, 7, 6930–7016,
https://doi.org/10.3390/en7116930, 2014. a
Hou, P., Hu, W., Chen, C., and Chen, Z.: Optimisation of offshore wind farm
cable connection layout considering levelised production cost using dynamic
minimum spanning tree algorithm, IET Renew. Power Gen., 10,
175–183, https://doi.org/10.1049/iet-rpg.2015.0052, 2016a. a
Hou, P., Hu, W., and Chen, Z.: Optimisation for offshore wind farm cable
connection layout using adaptive particle swarm optimisation minimum spanning
tree method, IET Renew Power Gen., 10, 694–702,
https://doi.org/10.1049/iet-rpg.2015.0340, 2016b. a
Hutter, F., Hoos, H. H., and Leyton-Brown, K.: Sequential model-based
optimization for general algorithm configuration, in: Learning and
Intelligent Optimization, LION 2011, Lecture Notes in Computer Science, 507–523, Springer, https://doi.org/10.1007/978-3-642-25566-3_40, 2011. a
IEA Wind Task 37: Wake Model Description for Optimization Only Case
Study, Tech. rep., International Energy Agency,
https://github.com/byuflowlab/iea37-wflo-casestudies/blob/master/cs1-2/iea37-wakemodel.pdf (last access: 19 April 2022),
2019. a
Investopedia: Capital budgeting,
https://www.investopedia.com/ask/answers/05/irrvsnpvcapitalbudgeting.asp (last access: 19 April 2022),
2021. a
Katic, I., Højstrup, J., and Jensen, N. O.: A simple model for cluster
efficiency, in: European wind energy association conference and exhibition,
edited by: Palz, W. and Sesto, E., vol. 1, A. Raguzzi, 407–410, 1986. a
Kershenbaum, A.: Computing capacitated minimal spanning trees efficiently,
Networks, 4, 299–310, https://doi.org/10.1002/net.3230040403, 1974. a
Kershenbaum, A. and Chou, W.: A Unified Alporithm for Designing Multidrop
Teleprocessing Networks, IEEE T. Commun., 22,
1762–1772, https://doi.org/10.1109/TCOM.1974.1092123, 1974. a
Kruskal, J. B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem, P. Am. Math. Soc., 7,
48–50, https://doi.org/10.1090/S0002-9939-1956-0078686-7, 1956. a
Lumbreras, S. and Ramos, A.: Offshore wind farm electrical design: a review,
Wind Energy, 16, 459–473, https://doi.org/10.1002/we.1498, 2013. a
Lundberg, S.: Configuration study of large wind parks, PhD thesis, Chalmers
University of Technology, 2003. a
Marge, T., Lumbreras, S., Ramos, A., and Hobbs, B. F.: Integrated offshore wind
farm design: Optimizing micro-siting and cable layout simultaneously, Wind
Energy, 22, 1684–1698, https://doi.org/10.1002/we.2396, 2019. a
Marmidis, G., Lazarou, S., and Pyrgioti, E.: Optimal placement of wind turbines
in a wind park using Monte Carlo simulation, Renew. Energ., 33,
1455–1460, https://doi.org/10.1016/j.renene.2007.09.004, 2008. a
Megavind: Megavind LCOE Model Guidelines and documentation,
https://hvlopen.brage.unit.no/hvlopen-xmlui/bitstream/handle/11250/2679327/Megavind%20LCOE%20Model%20Guidelines%20and%20documentations.pdf?sequence=2 (last access: 19 April 2022),
2021. a
Minguijón, D. H., Pérez-Rúa, J.-A., Das, K., and Cutululis, N. A.:
Metaheuristic-based Design and Optimization of Offshore Wind Farms Collection
Systems, in: 2019 IEEE Milan PowerTech, 1–6, IEEE,
https://doi.org/10.1109/PTC.2019.8810583, 2019. a
Mosetti, G., Poloni, C., and Diviacco, D.: Optimization of wind turbine
positioning in large wind farms by means of a genetic algorithm, J. Wind Eng. Ind. Aerod., 51, 105–116,
https://doi.org/10.1016/0167-6105(94)90080-9, 1994. a
Ning, A., Dykes, K., and Quick, J.: Systems engineering and optimization of
wind turbines and power plants, Institution of Engineering and
Technology, London, edited by: Veers, P., https://digital-library.theiet.org/content/books/po/pbpo125g (last access: 19 April 2022),
2019. a
Nord Pool: Nord pool market data,
https://www.nordpoolgroup.com/Market-data1/#/nordic/table (last access: 15 March 2021),
2021. a
ORE Catapult: Wind farm costs,
https://guidetoanoffshore-windfarm.com/wind-farm-costs (last access: 19 April 2022), 2020. a
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Rinker, J., and
Réthoré, P.-E.: DTUWindEnergy/PyWake: PyWake, Zenodo [code],
https://doi.org/10.5281/zenodo.2562662, 2019. a
Pérez-Rúa, J.-A. and Cutululis, N. A.: Electrical Cable
Optimization in Offshore Wind Farms – A review, IEEE Access, 7,
85796–85811, https://doi.org/10.1109/ACCESS.2019.2925873, 2019. a, b, c, d
Pérez-Rúa, J.-A., Minguijón, D. H., Das, K., and Cutululis, N. A.:
Heuristics-based design and optimization of offshore wind farms collection
systems, J. Phys. Conf. Ser., 1356, 012014, https://doi.org/10.1088/1742-6596/1356/1/012014, 2019a. a, b, c
Pérez-Rúa, J.-A., Stolpe, M., Das, K., and Cutululis, N. A.: Global
Optimization of Offshore Wind Farm Collection Systems, IEEE T. Power Syst., 35, 2256–2267, https://doi.org/10.1109/TPWRS.2019.2957312,
2019b. a, b, c, d
Pérez-Rúa, J.-A., Stolpe, M., and Cutululis, N. A.: Integrated
Global Optimization Model for Electrical Cables in Offshore Wind Farms, IEEE T. Sustain. Energ., 11, 1965–1974,
https://doi.org/10.1109/TSTE.2019.2948118, 2020. a
Pérez-Rúa, J.-A. and Cutululis, N. A.: Code for research article: A framework for simultaneous design of wind turbines and cable layout in offshore wind (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6470472, 2022a. a
Pérez-Rúa, J.-A. and Cutululis, N. A.: Data generated for study of simultaneous design of wind turbines and cable layout in offshore wind (Version 0), Zenodo [data set], https://doi.org/10.5281/zenodo.5913079, 2022b. a
Prim, R. C.: Shortest Connection Networks And Some Generalizations, AT&T Tech. J., 36, 1389–1401,
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x, 1957. a
Riva, R., Liew, J., Friis-Møller, M., Dimitrov, N., Barlas, E.,
Réthoré, P.-E., and Beržonskis, A.: Wind farm layout
optimization with load constraints using surrogate modelling, J. Phys. Conf. Ser., 1618, 042035, https://doi.org/10.1088/1742-6596/1618/4/042035, 2020. a
Roscher, B., Mortimer, P., Schelenz, R., Jacobs, G., and Baseer, A.: Optimizing
a wind farm layout considering access roads, J. Phys. Conf. Ser., 1618, 042014, https://doi.org/10.1088/1742-6596/1618/4/042014, 2020. a
Sanchez Perez-Moreno, S., Dykes, K., Merz, K., and Zaaijer, M.:
Multidisciplinary design analysis and optimisation of a reference offshore
wind plant, J. Phys. Conf. Ser., 1037, 042004,
https://doi.org/10.1088/1742-6596/1037/4/042004, 2018. a, b, c, d
Stanley, A. P. J. and Ning, A.: Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines, Wind Energ. Sci., 4, 99–114, https://doi.org/10.5194/wes-4-99-2019, 2019a. a, b
Stanley, A. P. J. and Ning, A.: Massive simplification of the wind farm layout optimization problem, Wind Energ. Sci., 4, 663–676, https://doi.org/10.5194/wes-4-663-2019, 2019b. a
Stanley, A. P. J. and Ning, A.: Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines, Wind Energ. Sci., 4, 99–114, https://doi.org/10.5194/wes-4-99-2019, 2019c. a
Stanley, A. P. J., Ning, A., and Dykes, K.: Benefits of Two Turbine Rotor
Diameters and Hub Heights in the Same Wind Farm, in: Proceedings of the 2018
Wind Energy Symposium at the AIAA SciTech Forum, Kissimmee, Florida, 8–12 January 2018, https://doi.org/10.2514/6.2018-2016, 2018. a
Tao, S., Xu, Q., Feijóo, A., and Zheng, G.: Joint Optimization of Wind
Turbine Micrositing and Cabling in an Offshore Wind Farm, IEEE T. Smart Grid, 12, 834–844, https://doi.org/10.1109/TSG.2020.3022378, 2021. a
Tarjan, R.: Depth-First Search and Linear Graph Algorithms, SIAM J. Comput., 1, 146–160, https://doi.org/10.1137/0201010, 1972. a
Tennet: North Sea Energy Infrastructure: Status and outlook, Tech. rep.,
Tennet,
https://www.sintef.no/globalassets/project/eera-deepwind-2019/presenta-tions/opening_piepers_tennet_new.pdf (last access: 15 March 2021),
2019. a
Thomas, J. J. and Ning, A.: A method for reducing multi-modality in the wind
farm layout optimization problem, J. Phys. Conf. Ser.,
1037, 042012, https://doi.org/10.1088/1742-6596/1037/4/042012, 2018. a
Wade, B., Pereira, R., and Wade, C.: Investigation of offshore wind farm
layouts regarding wake effects and cable topology, J. Phys. Conf. Ser., 1222, 012007, https://doi.org/10.1088/1742-6596/1222/1/012007,
2019. a, b
Wagner, M., Day, J., and Neumann, F.: A fast and effective local search
algorithm for optimizing the placement of wind turbines, Renew. Energ.,
51, 64–70, https://doi.org/10.1016/j.renene.2012.09.008, 2013. a
Wan, C., Wang, J., Yang, G., and Zhang, X.: Optimal micro-siting of wind farms
by particle swarm optimization, in: International Conference in Swarm
Intelligence, 198–205, Springer,
https://doi.org/10.1007/978-3-642-13495-1_25, 2010. a
WindEurope: Offshore Wind in Europe: Key trends and statistics 2018,
Report, GWEC, Brussels, Belgium,
https://windeurope.org/members-area/statistics/offshore-wind-in-europe-2018/ (last access: 15 March 2021),
2019.
a
WindEurope: WindEurope statistics 2020,
https://bit.ly/3sGjYBa (last access: 15 March 2021), 2020. a
Wu, Y. K., Lee, C. Y., Chen, C. R., Hsu, K. W., and Tseng, H. T.: Optimization
of the wind turbine layout and transmission system planning for a large-scale
offshore wind farm by AI technology, IEEE T. Ind. Appl., 50, 2071–2080, https://doi.org/10.1109/TIA.2013.2283219, 2014. a
Zhou, R. and Hansen, E. A.: Breadth-first heuristic search, Artificial
Intelligence, 170, 385–408,
https://doi.org/10.1016/j.artint.2005.12.002, 2006. a
Short summary
Wind farms are becoming larger, and they are shaping up as one of the main drivers towards full green energy transition. Because of their massive proliferation, more and more attention is nowadays focused on optimal design of these power plants. We propose an optimization framework in order to contribute to further cost reductions, by simultaneously designing the wind turbines and cable layout. We show the capability of the framework to improve designs compared to the classic approach.
Wind farms are becoming larger, and they are shaping up as one of the main drivers towards full...
Altmetrics
Final-revised paper
Preprint