Articles | Volume 8, issue 8
https://doi.org/10.5194/wes-8-1319-2023
https://doi.org/10.5194/wes-8-1319-2023
Research article
 | 
24 Aug 2023
Research article |  | 24 Aug 2023

Damping analysis of floating offshore wind turbines (FOWTs): a new control strategy reducing the platform vibrations

Matteo Capaldo and Paul Mella

Related subject area

Thematic area: Dynamics and control | Topic: Wind turbine control
Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar
Wei Fu, Feng Guo, David Schlipf, and Alfredo Peña
Wind Energ. Sci., 8, 1893–1907, https://doi.org/10.5194/wes-8-1893-2023,https://doi.org/10.5194/wes-8-1893-2023, 2023
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-154,https://doi.org/10.5194/wes-2023-154, 2023
Revised manuscript accepted for WES
Short summary
Wind vane correction during yaw misalignment for horizontal-axis wind turbines
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023,https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Increased power gains from wake steering control using preview wind direction information
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023,https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Analysis and multi-objective optimisation of wind turbine torque control strategies
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023,https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022.  a, b, c, d, e, f
Ali, S. K., Li, Y., Nagamune, R., Zhou, Y., and Ur Rehman, W.: Platform motion minimization using model predictive control of a floating offshore wind turbine, Theor. Appl., 11, 100295, https://doi.org/10.1016/j.taml.2021.100295, 2021. 
Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Technical report National Renewable Energy Laboratory, Golden, CO, USA, https://www.osti.gov/biblio/1660012 (last access: 1 December 2022), 2020. a, b
ASTM: E1049-85, A Standard Practices for Cycle Counting in Fatigue Analysis, https://www.astm.org/e1049-85r17.html (last access: 15 December 2022), 2017. a
Bianchi, F., De Battista, H., and Mantz, R.: Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer, ISBN 978-1-84628-493-9, 2007. a
Download
Short summary
The controller impacts the movements, loads and yield of wind turbines. Standard controllers are not adapted for floating, and they can lead to underperformances and overloads. New control strategies, considering the coupling between the floating dynamics and the rotor dynamics, are necessary to reduce platform movements and to improve performances. This work proposes a new control strategy adapted to floating wind, showing a reduction in loads without affecting the power production.
Altmetrics
Final-revised paper
Preprint