Articles | Volume 8, issue 9
https://doi.org/10.5194/wes-8-1369-2023
https://doi.org/10.5194/wes-8-1369-2023
Research article
 | 
07 Sep 2023
Research article |  | 07 Sep 2023

Numerical study of the unsteady blade root aerodynamics of a 2 MW wind turbine equipped with vortex generators

Ferdinand Seel, Thorsten Lutz, and Ewald Krämer

Related authors

The near-wake development of a wind turbine operating in stalled conditions – Part 1: Assessment of numerical models
Pascal Weihing, Marion Cormier, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 9, 933–962, https://doi.org/10.5194/wes-9-933-2024,https://doi.org/10.5194/wes-9-933-2024, 2024
Short summary
OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023,https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions
Pradip Zamre and Thorsten Lutz
Wind Energ. Sci., 7, 1661–1677, https://doi.org/10.5194/wes-7-1661-2022,https://doi.org/10.5194/wes-7-1661-2022, 2022
Short summary
Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573, https://doi.org/10.5194/wes-7-1551-2022,https://doi.org/10.5194/wes-7-1551-2022, 2022
Short summary
High-fidelity aeroelastic analyses of wind turbines in complex terrain: fluid–structure interaction and aerodynamic modeling
Giorgia Guma, Philipp Bucher, Patrick Letzgus, Thorsten Lutz, and Roland Wüchner
Wind Energ. Sci., 7, 1421–1439, https://doi.org/10.5194/wes-7-1421-2022,https://doi.org/10.5194/wes-7-1421-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024,https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
An insight into the capability of the actuator line method to resolve tip vortices
Pier Francesco Melani, Omar Sherif Mohamed, Stefano Cioni, Francesco Balduzzi, and Alessandro Bianchini
Wind Energ. Sci., 9, 601–622, https://doi.org/10.5194/wes-9-601-2024,https://doi.org/10.5194/wes-9-601-2024, 2024
Short summary
Aerodynamic model comparison for an X-shaped vertical-axis wind turbine
Adhyanth Giri Ajay, Laurence Morgan, Yan Wu, David Bretos, Aurelio Cascales, Oscar Pires, and Carlos Ferreira
Wind Energ. Sci., 9, 453–470, https://doi.org/10.5194/wes-9-453-2024,https://doi.org/10.5194/wes-9-453-2024, 2024
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: Experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-3,https://doi.org/10.5194/wes-2024-3, 2024
Revised manuscript accepted for WES
Short summary
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024,https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary

Cited articles

Arnold, M., Wenz, F., Kühn, T., Lutz, T., and Altmikus, A.: Integration of System Level CFD Simulations into the Development Process of Wind Turbine Prototypes, J. Phys. Conf. Ser., 1618, 052007, https://doi.org/10.1088/1742-6596/1618/5/052007, 2020. a
Baldacchino, D.: Vortex Generators for Flow Separation Control: Wind Turbine Applications, PhD thesis, Delft University of Technology, https://doi.org/10.4233/uuid:99b15acb-e25e-4cd9-8541-1e4056c1baed, 2019. a, b
Baldacchino, D., Manolesos, M., Ferreira, C., Salcedo, Á.. G., Aparicio, M., Chaviaropoulos, T., Diakakis, K., Florentie, L., García, N. R., Papadakis, G., Sørensen, N. N., Timmer, N., Troldborg, N., Voutsinas, S., and van Zuijlen, A.: Experimental benchmark and code validation for airfoils equipped with passive vortex generators, J. Phys. Conf. Ser., 753, 022002, https://doi.org/10.1088/1742-6596/753/2/022002, 2016. a, b
Baldacchino, D., Ferreira, C., de Tavernier, D., Timmer, W., and van Bussel, G. J. W.: Experimental parameter study for passive vortex generators on a 30 % thick airfoil, Wind Energy, 21, 745–765, https://doi.org/10.1002/we.2191, 2018. a, b, c, d, e, f
Bangga, G.: Three-dimensional flow in the root region of wind turbine rotors, PhD thesis, University of Stuttgart, https://doi.org/10.18419/opus-11032, ISBN 978-3-7376-0536-6, 2018. a, b, c, d, e, f, g, h, i
Download
Short summary
Vortex generators are evaluated on a 2 MW wind turbine rotor blade by computational fluid dynamic methods. Those devices delay flow separation on the airfoils and thus increase their efficiency. On the wind turbine blade, rotational phenomena (e.g. rotational augmentation) appear and interact with the vortices from the vortex generators. The understanding of those interactions is crucial in order to optimise the placement of the vortex generators and evaluate their real efficiency on the blade.
Altmetrics
Final-revised paper
Preprint