Articles | Volume 8, issue 11
https://doi.org/10.5194/wes-8-1639-2023
https://doi.org/10.5194/wes-8-1639-2023
Research article
 | 
08 Nov 2023
Research article |  | 08 Nov 2023

Refining the airborne wind energy system power equations with a vortex wake model

Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce

Related authors

Concurrent aerodynamic design of the wing and the turbines of airborne wind energy systems
Filippo Trevisi, Gianni Cassoni, Mac Gaunaa, and Lorenzo Mario Fagiano
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-134,https://doi.org/10.5194/wes-2025-134, 2025
Preprint under review for WES
Short summary
Vortex model of the aerodynamic wake of airborne wind energy systems
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 999–1016, https://doi.org/10.5194/wes-8-999-2023,https://doi.org/10.5194/wes-8-999-2023, 2023
Short summary
Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method
Filippo Trevisi, Iván Castro-Fernández, Gregorio Pasquinelli, Carlo Emanuele Dionigi Riboldi, and Alessandro Croce
Wind Energ. Sci., 7, 2039–2058, https://doi.org/10.5194/wes-7-2039-2022,https://doi.org/10.5194/wes-7-2039-2022, 2022
Short summary

Cited articles

Anderson, J.: Fundamentals of Aerodynamics, McGraw-Hill Education, sixth edn., http://lccn.loc.gov/2015040997 (last access: 11 May 2023), 2017. a
Argatov, I. and Silvennoinen, R.: Efficiency of Traction Power Conversion Based on Crosswind Motion, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., 65–79, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-39965-7_4, 2013. a
Bauer, F., Kennel, R. M., Hackl, C. M., Campagnolo, F., Patt, M., and Schmehl, R.: Drag power kite with very high lift coefficient, Renew. Energ., 118, 290–305, https://doi.org/10.1016/j.renene.2017.10.073, 2018. a
De Lellis, M., Reginatto, R., Saraiva, R., and Trofino, A.: The Betz limit applied to Airborne Wind Energy, Renew. Energ., 127, 32–40, https://doi.org/10.1016/j.renene.2018.04.034, 2018. a
Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., 3–22, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-39965-7_1, 2013. a, b
Download
Short summary
The power equations of crosswind Ground-Gen and Fly-Gen airborne wind energy systems (AWESs) are refined to include the contribution from the aerodynamic wake. A novel power coefficient is defined by normalizing the aerodynamic power with the wind power passing through a disk with a radius equal to the AWES wingspan, allowing us to compare systems with different wingspans. Ground-Gen and Fly-Gen AWESs are compared in terms of their aerodynamic power potential.
Share
Altmetrics
Final-revised paper
Preprint