Articles | Volume 8, issue 2
https://doi.org/10.5194/wes-8-231-2023
https://doi.org/10.5194/wes-8-231-2023
Research article
 | 
21 Feb 2023
Research article |  | 21 Feb 2023

Extreme coherent gusts with direction change – probabilistic model, yaw control, and wind turbine loads

Ásta Hannesdóttir, David R. Verelst, and Albert M. Urbán

Related authors

Aerodynamic effects of leading-edge erosion in wind farm flow modeling
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024,https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
The Impact of Climate Change on Extreme Winds over Northern Europe According to CMIP6
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102,https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Lifetime prediction of turbine blades using global precipitation products from satellites
Merete Badger, Haichen Zuo, Ásta Hannesdóttir, Abdalmenem Owda, and Charlotte Hasager
Wind Energ. Sci., 7, 2497–2512, https://doi.org/10.5194/wes-7-2497-2022,https://doi.org/10.5194/wes-7-2497-2022, 2022
Short summary
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021,https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Detection and characterization of extreme wind speed ramps
Ásta Hannesdóttir and Mark Kelly
Wind Energ. Sci., 4, 385–396, https://doi.org/10.5194/wes-4-385-2019,https://doi.org/10.5194/wes-4-385-2019, 2019
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions
Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen
Wind Energ. Sci., 9, 1005–1024, https://doi.org/10.5194/wes-9-1005-2024,https://doi.org/10.5194/wes-9-1005-2024, 2024
Short summary
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024,https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW Reference Wind Turbine, Tech. rep., DTU Wind Energy, 2013. a, b
Beardsell, A., Collier, W., and Han, T.: Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed, J. Phys.: Conf. Ser., 753, 042002, https://doi.org/10.1088/1742-6596/753/4/042002, 2016. a
Belušić, D. and Mahrt, L.: Is geometry more universal than physics in atmospheric boundary layer flow?, J. Geophys. Res.-Atmos., 117, 1–10, https://doi.org/10.1029/2011JD016987, 2012. a
Bossanyi, E., Delouvrié, T., Lindahl, S., and Garrad Hassan, G. L.: Long-term simulations for optimising yaw control and start-stop Strategies, in: European Wind Energy Conference, Ewec 2013, Vienna, 1199–1208, 2013. a
Chai, W. and Leira, B. J.: Environmental contours based on inverse SORM, Mar. Struct., 60, 34–51, https://doi.org/10.1016/j.marstruc.2018.03.007, 2018. a, b, c
Download
Short summary
In this work we use observations of large coherent fluctuations to define a probabilistic gust model. The gust model provides the joint description of the gust rise time, amplitude, and direction change. We perform load simulations with a coherent gust according to the wind turbine safety standard and with the probabilistic gust model. A comparison of the simulated loads shows that the loads from the probabilistic gust model can be significantly higher due to variability in the gust parameters.
Altmetrics
Final-revised paper
Preprint