Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-865-2023
https://doi.org/10.5194/wes-8-865-2023
Research article
 | 
01 Jun 2023
Research article |  | 01 Jun 2023

A comparison of eight optimization methods applied to a wind farm layout optimization problem

Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning

Related authors

A numerical framework for optimal trade-offs between land use and LCOE using efficient, blockage-aware multi-fidelity methods
Cory Frontin, Jeff Allen, Christopher J. Bay, Jared Thomas, Ethan Young, and Pietro Bortolotti
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-103,https://doi.org/10.5194/wes-2025-103, 2025
Preprint under review for WES
Short summary
Gradient-Based Wind Farm Layout Optimization Results Compared with Large-Eddy Simulations
Jared J. Thomas, Christopher J. Bay, Andrew P. J. Stanley, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-4,https://doi.org/10.5194/wes-2022-4, 2022
Revised manuscript not accepted
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Systems engineering
Enabling efficient sizing of hybrid power plants: a surrogate-based approach to energy management system modeling
Charbel Assaad, Juan Pablo Murcia Leon, Julian Quick, Tuhfe Göçmen, Sami Ghazouani, and Kaushik Das
Wind Energ. Sci., 10, 559–578, https://doi.org/10.5194/wes-10-559-2025,https://doi.org/10.5194/wes-10-559-2025, 2025
Short summary
Upwind vs downwind: Loads and acoustics of a 1.5 MW wind turbine
Pietro Bortolotti, Lee Jay Fingersh, Nicholas Hamilton, Arlinda Huskey, Chris Ivanov, Mark Iverson, Jonathan Keller, Scott Lambert, Jason Roadman, Derek Slaughter, Syhoune Thao, and Consuelo Wells
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-8,https://doi.org/10.5194/wes-2025-8, 2025
Revised manuscript accepted for WES
Short summary
Designing wind turbines for profitability in the day-ahead market
Mihir Kishore Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 2283–2300, https://doi.org/10.5194/wes-9-2283-2024,https://doi.org/10.5194/wes-9-2283-2024, 2024
Short summary
Aerodynamic effects of leading-edge erosion in wind farm flow modeling
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024,https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024,https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary

Cited articles

Arnoud, A., Guvenen, F., and Kleineberg, T.: Benchmarking Global Optimizers, Working Paper 26340, National Bureau of Economic Research, https://doi.org/10.3386/w26340, 2019. a
Baker, N. F., Stanley, A. P. J., Thomas, J. J., Ning, A., and Dykes, K.: Best Practices for Wake Model and Optimization Algorithm Selection in Wind Farm Layout Optimization, in: AIAA Scitech 2019 Forum, San Diego, CA, https://doi.org/10.2514/6.2019-0540, 2019. a, b, c, d, e
Baker, N. F., Thomas, J. J., Stanley, A. P. J., and Ning, A.: IEA Task 37 Wind Farm Layout Optimization Case Studies, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5809681, 2021. a, b, c, d
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Belegundu, A. D. and Chandrupatla, T. R.: Optimization Concepts and Applications in Engineering, 2nd Edn., Cambridge University Press, ISBN 13:978-0521878463, 2011. a
Download
Short summary
This work compares eight optimization algorithms (including gradient-based, gradient-free, and hybrid) on a wind farm optimization problem with 4 discrete regions, concave boundaries, and 81 wind turbines. Algorithms were each run by researchers experienced with that algorithm. Optimized layouts were unique but with similar annual energy production. Common characteristics included tightly-spaced turbines on the outer perimeter and turbines loosely spaced and roughly on a grid in the interior.
Share
Altmetrics
Final-revised paper
Preprint