Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2087-2024
https://doi.org/10.5194/wes-9-2087-2024
Review article
 | 
06 Nov 2024
Review article |  | 06 Nov 2024

Grand challenges of wind energy science – meeting the needs and services of the power system

Mark O'Malley, Hannele Holttinen, Nicolaos Cutululis, Til Kristian Vrana, Jennifer King, Vahan Gevorgian, Xiongfei Wang, Fatemeh Rajaei-Najafabadi, and Andreas Hadjileonidas

Related authors

Functional Specifications and Testing Requirements of Grid-Forming Offshore Wind Power Plants
Sulav Ghimire, Gabriel M. G. Guerreiro, Kanakesh Vatta Kkuni, Emerson David Guest, Kim Høj Jensen, Guangya Yang, and Xiongfei Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-61,https://doi.org/10.5194/wes-2024-61, 2024
Revised manuscript accepted for WES
Short summary
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024,https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
A neighborhood search integer programming approach for wind farm layout optimization
Juan-Andrés Pérez-Rúa, Mathias Stolpe, and Nicolaos Antonio Cutululis
Wind Energ. Sci., 8, 1453–1473, https://doi.org/10.5194/wes-8-1453-2023,https://doi.org/10.5194/wes-8-1453-2023, 2023
Short summary
Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023,https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022,https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary

Related subject area

Thematic area: Electrical conversion, integration and impacts | Topic: Electrical conversion, grid integration, and Wind-to-X
Functional Specifications and Testing Requirements of Grid-Forming Offshore Wind Power Plants
Sulav Ghimire, Gabriel M. G. Guerreiro, Kanakesh Vatta Kkuni, Emerson David Guest, Kim Høj Jensen, Guangya Yang, and Xiongfei Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-61,https://doi.org/10.5194/wes-2024-61, 2024
Revised manuscript accepted for WES
Short summary
Optimizing offshore wind export cable routing using GIS-based environmental heat maps
Joni Thomas Backstrom, Nicholas Mark Warden, and Colleen Marie Walsh
Wind Energ. Sci., 9, 1105–1121, https://doi.org/10.5194/wes-9-1105-2024,https://doi.org/10.5194/wes-9-1105-2024, 2024
Short summary
A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport
Claudio Alexis Rodríguez Castillo, Baran Yeter, Shen Li, Feargal Brennan, and Maurizio Collu
Wind Energ. Sci., 9, 533–554, https://doi.org/10.5194/wes-9-533-2024,https://doi.org/10.5194/wes-9-533-2024, 2024
Short summary
Optimal position and distribution mode for on-site hydrogen electrolyzers in onshore wind farms for a minimal levelized cost of hydrogen (LCoH)
Thorsten Reichartz, Georg Jacobs, Tom Rathmes, Lucas Blickwedel, and Ralf Schelenz
Wind Energ. Sci., 9, 281–295, https://doi.org/10.5194/wes-9-281-2024,https://doi.org/10.5194/wes-9-281-2024, 2024
Short summary
Electrostatic discharge impacts on the main shaft bearings of wind turbines
Jian Zhao, Xiangdong Xu, and Ola Carlson
Wind Energ. Sci., 8, 1809–1819, https://doi.org/10.5194/wes-8-1809-2023,https://doi.org/10.5194/wes-8-1809-2023, 2023
Short summary

Cited articles

Abdul Wahab, N. I. and Mohamed, A.: Area-based COI-referred rotor angle index for transient stability assessment and control of power systems, Absrt. Appl. Anal., 2012, 410461, https://doi.org/10.1155/2012/410461, 2012. 
Achilles, S.: Black Start and System Restoration with Wind and Solar, ESIG – Energy Systems Integration Group, https://www.esig.energy/download/session-a-4-black-start-and-system-restoration-with-wind-and (last access: 11 October 2024), 2018. 
Ackermann, T.: Wind power in power systems, 2, John Wiley & Sons, https://doi.org/10.1002/9781119941842.ch4, 2012. 
Ackermann, T., Prevost, T., Vittal, V., Roscoe, A. J., Matevosyan, J., and Miller, N.: Paving the way: A future without inertia is closer than you think, IEEE Power Energ. Mag., 15, 61–69, https://doi.org/10.1109/MPE.2017.2729138, 2017. 
Ahmed, S. D., Al-Ismail, F. S., Shafiullah, M., Al-Sulaiman, F. A., and El-Amin, I. M.: Grid integration challenges of wind energy: A review, IEEE Access, 8, 10857–10878, https://doi.org/10.1109/ACCESS.2020.2964896, 2020. 
Download
Short summary
The rising share of wind power poses challenges to cost-effective integration while ensuring reliability. Balancing the needs of the power system and contributions of wind power is crucial for long-term value. Research should prioritize wind power advantages over competitors, focussing on internal challenges. Collaboration with other technologies is essential for addressing the fundamental objectives of power systems – maintaining reliable supply–demand balance at the lowest cost.
Altmetrics
Final-revised paper
Preprint