Articles | Volume 9, issue 3
https://doi.org/10.5194/wes-9-585-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-585-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gradient-based wind farm layout optimization with inclusion and exclusion zones
Javier Criado Risco
CORRESPONDING AUTHOR
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
now at: Ørsted, Nesa Allé 1, 2820 Gentofte, Denmark
Rafael Valotta Rodrigues
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
now at: Electrical and Computer Engineering Department, University of Massachusetts Boston, 100 Morissey Blvd, Boston, MA 02125, United States of America
Mikkel Friis-Møller
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Julian Quick
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Mads Mølgaard Pedersen
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Pierre-Elouan Réthoré
Wind Energy and Power Systems, Technical University Of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Related authors
No articles found.
Thuy-Hai Nguyen, Julian Quick, Pierre-Elouan Réthoré, Jean-François Toubeau, Emmanuel De Jaeger, and François Vallée
Wind Energ. Sci., 10, 1661–1680, https://doi.org/10.5194/wes-10-1661-2025, https://doi.org/10.5194/wes-10-1661-2025, 2025
Short summary
Short summary
Current offshore wind farms have been designed to maximize their production of electricity at all times and not to keep a reserve of power in case of unexpected events on the grid. We present a new formulation for designing wind farms to maximize revenues from both energy and reserve markets. We apply it to a real-life wind farm and show that profits are expected to increase in a significant way for wind farms designed and operated for reserve, with less energy supplied.
Julian Quick, Edward Hart, Marcus Binder Nilsen, Rasmus Sode Lund, Jaime Liew, Piinshin Huang, Pierre-Elouan Rethore, Jonathan Keller, Wooyong Song, and Yi Guo
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-63, https://doi.org/10.5194/wes-2025-63, 2025
Revised manuscript under review for WES
Short summary
Short summary
Wind turbine main bearings often fail prematurely, creating costly maintenance challenges. This study examined how wake effects – where upstream turbines create disturbed airflow that impacts downstream turbines – affect bearing lifespans. Using computer simulations, we found that wake effects reduce bearing life by 16% on average. The direction of wake impact matters significantly due to interactions between wind forces and gravity, informing better wind turbine and farm farm design strategies.
Charbel Assaad, Juan Pablo Murcia Leon, Julian Quick, Tuhfe Göçmen, Sami Ghazouani, and Kaushik Das
Wind Energ. Sci., 10, 559–578, https://doi.org/10.5194/wes-10-559-2025, https://doi.org/10.5194/wes-10-559-2025, 2025
Short summary
Short summary
This research develops a new method for assessing hybrid power plant (HPP) profitability, combining wind and battery systems. It addresses the need for an efficient, accurate, and comprehensive operational model by approximating a state-of-the-art energy management system (EMS) for spot market power bidding using machine learning. The approach significantly reduces computational demands while maintaining high accuracy. It thus opens new possibilities in terms of optimizing the design of HPPs.
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024, https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Short summary
Leading-edge erosion (LEE) can impact wind turbine aerodynamics and wind farm efficiency. This study couples LEE prediction, aerodynamic loss modeling, and wind farm flow modeling to show that LEE's effects on wake dynamics can affect overall energy production. Without preventive initiatives, the effects of LEE increase over time, resulting in significant annual energy production (AEP) loss.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Juan Pablo Murcia Leon, Hajar Habbou, Mikkel Friis-Møller, Megha Gupta, Rujie Zhu, and Kaushik Das
Wind Energ. Sci., 9, 759–776, https://doi.org/10.5194/wes-9-759-2024, https://doi.org/10.5194/wes-9-759-2024, 2024
Short summary
Short summary
A methodology for an early design of hybrid power plants (wind, solar, PV, and Li-ion battery storage) consisting of a nested optimization that sizes the components and internal operation optimization. Traditional designs that minimize the levelized cost of energy give worse business cases and do not include storage. Optimal operation balances the increasing revenues and faster battery degradation. Battery degradation and replacement costs are needed to estimate the viability of hybrid projects.
Rafael Valotta Rodrigues, Mads Mølgaard Pedersen, Jens Peter Schøler, Julian Quick, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024, https://doi.org/10.5194/wes-9-321-2024, 2024
Short summary
Short summary
The use of wind energy has been growing over the last few decades, and further increase is predicted. As the wind energy industry is starting to consider larger wind farms, the existing numerical methods for analysis of small and medium wind farms need to be improved. In this article, we have explored different strategies to tackle the problem in a feasible and timely way. The final product is a set of recommendations when carrying out trade-off analysis on large wind farms.
Julian Quick, Pierre-Elouan Rethore, Mads Mølgaard Pedersen, Rafael Valotta Rodrigues, and Mikkel Friis-Møller
Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023, https://doi.org/10.5194/wes-8-1235-2023, 2023
Short summary
Short summary
Wind turbine positions are often optimized to avoid wake losses. These losses depend on atmospheric conditions, such as the wind speed and direction. The typical optimization scheme involves discretizing the atmospheric inputs, then considering every possible set of these discretized inputs in every optimization iteration. This work presents stochastic gradient descent (SGD) as an alternative, which randomly samples the atmospheric conditions during every optimization iteration.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Camilla Marie Nyborg, Andreas Fischer, Pierre-Elouan Réthoré, and Ju Feng
Wind Energ. Sci., 8, 255–276, https://doi.org/10.5194/wes-8-255-2023, https://doi.org/10.5194/wes-8-255-2023, 2023
Short summary
Short summary
Our article presents a way of optimizing the wind farm operation by keeping the emitted noise level below a defined limit while maximizing the power output. This is done by switching between noise reducing operational modes. The method has been developed by using two different noise models, one more advanced than the other, to study the advantages of each model. Furthermore, the optimization method is applied to different wind farm cases.
Julian Quick, Ryan N. King, Garrett Barter, and Peter E. Hamlington
Wind Energ. Sci., 7, 1941–1955, https://doi.org/10.5194/wes-7-1941-2022, https://doi.org/10.5194/wes-7-1941-2022, 2022
Short summary
Short summary
Wake steering is an emerging wind power plant control strategy where upstream turbines are intentionally yawed out of alignment with the incoming wind, thereby steering wakes away from downstream turbines. Trade-offs between the gains in power production and fatigue loads induced by this control strategy are the subject of continuing investigation. In this study, we present an optimization approach for efficiently exploring the trade-offs between power and loading during wake steering.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Mads M. Pedersen and Gunner C. Larsen
Wind Energ. Sci., 5, 1551–1566, https://doi.org/10.5194/wes-5-1551-2020, https://doi.org/10.5194/wes-5-1551-2020, 2020
Short summary
Short summary
In this paper, the influence of optimal wind farm control and optimal wind farm layout is investigated in terms of power production. The capabilities of the developed optimization platform is demonstrated on the Swedish offshore wind farm, Lillgrund. It shows that the expected annual energy production can be increased by 4 % by integrating the wind farm control into the design of the wind farm layout, which is 1.2 % higher than what is achieved by optimizing the layout only.
Cited articles
Afanasyeva, S., Saari, J., Pyrhönen, O., and Partanen, J.: Cuckoo search for wind farm optimization with auxiliary infrastructure, Wind Energy, 21, 855–875, 2018. a
Anaconda Software Distribution: https://docs.anaconda.com/ (last access: November 2022), 2020. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Chen, L. and MacDonald, E.: A system-level cost-of-energy wind farm layout optimization with landowner modeling, Energ. Convers. Manage., 77, 484–494, 2014. a
Ciavarra, A. W., Rodrigues, R. V., Dykes, K., and Réthoré, P.-E.: Wind farm optimization with multiple hub heights using gradient-based methods, J. Phys. Conf. Ser., 2265, 022012, https://doi.org/10.1088/1742-6596/2265/2/022012, 2022. a
Dalla Longa, F., Kober, T., Badger, J., Volker, P., Hoyer-Klick, C., Hidalgo Gonzalez, I., Medarac, H., Nijs, W., Politis, S., Tarvydas, D., and Zucker, A.: Wind potentials for EU and neighbouring countries, Tech. rep., JRC Technical Report for the European Commission, https://doi.org/10.2760/041705, 2018. a
DTU Wind Energy Systems: PyWake, commit 3a61c8aec34a2505d0b460da2ad831aeaf46802b, https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake (last access: November 2022), 2022a. a
Feng, J., Shen, W. Z., and Li, Y.: An optimization framework for wind farm design in complex terrain, Appl. Sci.-Basel, 8, 2053, https://doi.org/10.3390/app8112053, 2018. a
Fischereit, J., Schaldemose Hansen, K., Larsén, X. G., van der Laan, M. P., Réthoré, P.-E., and Murcia Leon, J. P.: Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models, Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, 2022. a
Forsting, A. M., Rathmann, O. S., van der Laan, M., Troldborg, N., Gribben, B., Hawkes, G., and Branlard, E.: Verification of induction zone models for wind farm annual energy production estimation, J. Phys. Conf. Ser., 1934, 012023, https://doi.org/10.1088/1742-6596/1934/1/012023, 2021. a
González, J. S., Trigo García, Á. L., Payán, M. B., Santos, J. R., and González Rodríguez, Á. G.: Optimal wind-turbine micro-siting of offshore wind farms: A grid-like layout approach, Appl. Energ., 200, 28–38, https://doi.org/10.1016/j.apenergy.2017.05.071, 2017. a
Hou, P., Hu, W., Chen, C., Soltani, M., and Chen, Z.: Optimization of offshore wind farm layout in restricted zones, Energy, 113, 487–496, 2016. a
Kraft, D.: A Software Package for Sequential Quadratic Programming, Forschungsbericht, Wiss. Berichtswesen d. DFVLR, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Köln, https://books.google.dk/books?id=4rKaGwAACAAJ (last access: November 2022), 1988. a
Maclaurin, D., Duvenaud, D., and Adams, R. P.: Autograd: Effortless gradients in numpy, Wiss. Berichtswesen d. DFVLR, https://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf (last access: November 2022), 2015. a
Masoudi, S. M. and Baneshi, M.: Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment, Energy, 244, 123188, https://doi.org/10.1016/j.energy.2022.123188, 2022. a
Mittal, P. and Mitra, K.: Determination of optimal layout of wind turbines inside a wind farm in presence of practical constraints, in: 2019 Fifth Indian Control Conference (ICC), 9–11 January 2019, New Delhi, India, https://doi.org/10.1109/indiancc.2019.8715616, 2019. a, b, c
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Rinker, J., and Réthoré, P.-E.: DTUWindEnergy/PyWake: PyWake, Zenodo [code], https://doi.org/10.5281/zenodo.2562662, 2019. a
Pedersen, M. M., Larsen, G. C., and Ott, S.: Optimal open loop control of wind power plants, in: Abstract from Wind Energy Science Conference, 25 May 2021, Hanover, Germany, https://backend.orbit.dtu.dk/ws/portalfiles/portal/247826534/2021_WESC_Optimal_open_loop_control_of_wind_power_plants2.pdf (last access: 9 March 2024), 2021. a
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Meyer Forsting, A., Riva, R., Alcayaga Romàn, L. A., Criado Risco, J., Quick, J., Schøler Christiansen, J. P., Olsen, B. T., Valotta Rodrigues, R., and Réthoré, P.-E.: DTUWindEnergy/PyWake: PyWake (v2.5.0), Zenodo [code], https://doi.org/10.5281/zenodo.6806136, 2023. a
Perez-Moreno, S. S., Dykes, K., Merz, K. O., and Zaaijer, M. B.: Multidisciplinary design analysis and optimisation of a reference offshore wind plant, J. Phys.: Conf. Ser., 1037, 042004, https://doi.org/10.1088/1742-6596/1037/4/042004, 2018. a
Quick, J., Rethore, P.-E., Mølgaard Pedersen, M., Rodrigues, R. V., and Friis-Møller, M.: Stochastic gradient descent for wind farm optimization, Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023, 2023. a
Reddy, S. R.: An efficient method for modeling terrain and complex terrain boundaries in constrained wind farm layout optimization, Renew. Energ., 165, 162–173, https://doi.org/10.1016/j.renene.2020.10.076, 2021. a, b
Réthoré, P.-E., Fuglsang, P., Larsen, G. C., Buhl, T., Larsen, T. J., and Madsen, H. A.: TOPFARM: Multi-fidelity optimization of wind farms, Wind Energy, 17, 1797–1816, 2014. a
Riva, R., Liew, J. Y., Friis-Møller, M., Dimitrov, N. K., Barlas, E., Réthoré, P.-E., and Pedersen, M. M.: TopFarm2 (v2.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.3553713, 2019. a
Riva, R., Liew, J., Friis-Møller, M., Dimitrov, N., Barlas, E., Réthoré, P.-E., and Beržonskis, A.: Wind farm layout optimization with load constraints using surrogate modelling, J. Phys. Conf. Ser., 1618, 042035, https://doi.org/10.1088/1742-6596/1618/4/042035, 2020. a
Rodrigues, R. V., Friis-Møller, M., Dykes, K., Pollini, N., and Jensen, M.: A surrogate model of offshore wind farm annual energy production to support financial evaluation, J. Phys. Conf. Ser., 2265, 022003, https://doi.org/10.1088/1742-6596/2265/2/022003, 2022. a
Shakoor, R., Hassan, M. Y., Raheem, A., and Rasheed, N.: Wind farm layout optimization using area dimensions and definite point selection techniques, Renew. Energ., 88, 154–163, 2016. a
Sorkhabi, S. Y. D., Romero, D. A., Yan, G. K., Gu, M. D., Moran, J., Morgenroth, M., and Amon, C. H.: The impact of land use constraints in multi-objective energy-noise wind farm layout optimization, Renew. Energ., 85, 359–370, https://doi.org/10.1016/j.renene.2015.06.026, 2016. a
Sorkhabi, S. Y. D., Romero, D. A., Beck, J. C., and Amon, C. H.: Constrained multi-objective wind farm layout optimization: Novel constraint handling approach based on constraint programming, Renew. Energ., 126, 341–353, 2018. a
Tao, S., Xu, Q., Feijóo-Lorenzo, A. E., Zheng, G., and Zhou, J.: Optimal layout of a Co-Located wind/tidal current farm considering forbidden zones, Energy, 228, 120570, https://doi.org/10.1016/j.energy.2021.120570, 2021. a
Valotta Rodrigues, R., Pedersen, M. M., Schøler, J. P., Quick, J., and Réthoré, P.-E.: Speeding up large-wind-farm layout optimization using gradients, parallelization, and a heuristic algorithm for the initial layout, Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024, 2024. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, L., Tan, A. C., Gu, Y., and Yuan, J.: A new constraint handling method for wind farm layout optimization with lands owned by different owners, Renew. Energ., 83, 151–161, 2015. a
Short summary
Wind energy developers frequently have to face some spatial restrictions at the time of designing a new wind farm due to different reasons, such as the existence of protected natural areas around the wind farm location, fishing routes, and the presence of buildings. Wind farm design has to account for these restricted areas, but sometimes this is not straightforward to achieve. We have developed a methodology that allows for different inclusion and exclusion areas in the optimization framework.
Wind energy developers frequently have to face some spatial restrictions at the time of...
Altmetrics
Final-revised paper
Preprint