Articles | Volume 1, issue 2
https://doi.org/10.5194/wes-1-271-2016
https://doi.org/10.5194/wes-1-271-2016
Research article
 | 
30 Nov 2016
Research article |  | 30 Nov 2016

Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors

Morten Hartvig Hansen

Related authors

Modal properties and stability of bend–twist coupled wind turbine blades
Alexander R. Stäblein, Morten H. Hansen, and David R. Verelst
Wind Energ. Sci., 2, 343–360, https://doi.org/10.5194/wes-2-343-2017,https://doi.org/10.5194/wes-2-343-2017, 2017
Short summary
Comparison of a coupled near- and far-wake model with a free-wake vortex code
Georg Pirrung, Vasilis Riziotis, Helge Madsen, Morten Hansen, and Taeseong Kim
Wind Energ. Sci., 2, 15–33, https://doi.org/10.5194/wes-2-15-2017,https://doi.org/10.5194/wes-2-15-2017, 2017
Short summary

Related subject area

Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022,https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022,https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022,https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022,https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary

Cited articles

Allemang, R. J.: The Modal Assurance Criterion – Twenty years of use and abuse, Sound Vibrat., 37, 14–21, 2003.
Bak, C., Bitsche, R., Yde, A., Kim, T., Hansen, M. H., Zahle, F., Gaunaa, M., Blasques, J. P. A. A., Døssing, M., Wedel Heinen, J. J., and Behrens, T.: Light Rotor: The 10-MW reference wind turbine, European Wind Energy Association Conference and Exhibition, 16–19 April 2012, Copenhagen, Denmark, 2012.
Bergami, L. and, Hansen, M. H.: High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps, Wind Energy., https://doi.org/10.1002/we.2014, in press, 2016.
Bergami, L., Madsen, H. A., and Rasmussen, F.: A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations, European Wind Energy Association Conference and Exhibition, 11–13 March 2014, Barcelona, Spain, 2014.
Bir, G.: Multi-blade coordinate transformation and its application to wind turbine analysis, ASME Wind Energy Symposium, January 2008, Reno, USA, 1–15, 2008.
Download
Short summary
The modal dynamics of wind turbines are the fingerprints of their responses under the stochastic excitation from the wind field. Commercial wind turbines have typically three-bladed rotors, and their modal dynamics are well understood. Two-bladed turbines are still commercially less successful, and this work also shows that their modal dynamics are significantly more complex than that of turbines with three or more blades.
Altmetrics
Final-revised paper
Preprint