Articles | Volume 8, issue 2
https://doi.org/10.5194/wes-8-193-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-193-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of dynamic inflow models for the blade element momentum method
Simone Mancini
CORRESPONDING AUTHOR
TNO Wind Energy, Westerduinweg 3, 1755 LE Petten, the Netherlands
Koen Boorsma
TNO Wind Energy, Westerduinweg 3, 1755 LE Petten, the Netherlands
Gerard Schepers
TNO Wind Energy, Westerduinweg 3, 1755 LE Petten, the Netherlands
Feike Savenije
TNO Wind Energy, Westerduinweg 3, 1755 LE Petten, the Netherlands
Related authors
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1617–1629, https://doi.org/10.5194/wes-9-1617-2024, https://doi.org/10.5194/wes-9-1617-2024, 2024
Short summary
Short summary
This study presents results from a wind tunnel experiment on a model wind turbine with swept blades, thus blades curved in the rotor plane. Using a non-intrusive measurement technique, the flow around the turbine blades was measured from which blade-level aerodynamics are derived in post-processing. The detailed experimental database gives insight into swept-blade aerodynamics and has great value in validating numerical tools, which aim at simulating swept wind turbine blades.
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1173–1187, https://doi.org/10.5194/wes-9-1173-2024, https://doi.org/10.5194/wes-9-1173-2024, 2024
Short summary
Short summary
This study presents results from a wind tunnel experiment on a model wind turbine. Using a non-intrusive measurement technique, the flow around the turbine blades was measured. In post-processing, the blade-level aerodynamics are derived from the measured flow fields. The detailed experimental database has great value in validating numerical tools of varying complexity, which aim at simulating wind turbine aerodynamics as accurately as possible.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Nirav Dangi, Koen Boorsma, Edwin Bot, Wim Bierbooms, and Wei Yu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-90, https://doi.org/10.5194/wes-2023-90, 2023
Preprint withdrawn
Short summary
Short summary
The wind turbine wake is a downstream region of velocity deficit, resulting in a power loss for downstream wind turbines. A turbulator is proposed to minimize this velocity deficit. In this work, a very successful field test campaign was executed which demonstrated the use of segmented Gurney Flaps as a promising add-on to promote enhanced wind turbine wake recovery for improved overall wind farm farm performance.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Kisorthman Vimalakanthan, Harald van der Mijle Meijer, Iana Bakhmet, and Gerard Schepers
Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023, https://doi.org/10.5194/wes-8-41-2023, 2023
Short summary
Short summary
Leading edge erosion (LEE) is one of the most critical degradation mechanisms that occur with wind turbine blades. A detailed understanding of the LEE process and the impact on aerodynamic performance due to the damaged leading edge is required to optimize blade maintenance. Providing accurate modeling tools is therefore essential. This novel study assesses CFD approaches for modeling high-resolution scanned LE surfaces from an actual blade with LEE damages.
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022, https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Short summary
The paper is part of the Grand Challenges Papers for Wind Energy. It provides a status of small wind turbine technology in terms of technical maturity, diffusion, and cost. Then, five grand challenges that are thought to be key to fostering the development of the technology are proposed. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Improvement areas are highlighted, within which 10 key enabling actions are finally proposed to the wind community.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022, https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Short summary
An accurate prediction of loads and power of an offshore wind turbine is needed for an optimal design. However, such predictions are typically performed with engineering models that contain many inaccuracies and uncertainties. In this paper we have proposed a systematic approach to quantify and calibrate these uncertainties based on two experimental datasets. The calibrated models are much closer to the experimental data and are equipped with an estimate of the uncertainty in the predictions.
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Short summary
Dynamic inflow denotes the unsteady aerodynamic response to fast changes in rotor loading and leads to load overshoots. We performed a pitch step experiment with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg. We measured axial and tangential inductions with a recent method with a 2D-LDA system and performed load and wake measurements. These radius-resolved measurements allow for new insights into the dynamic inflow phenomenon.
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021, https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Short summary
In this article the aeroelastic loads on a 10 MW turbine in response to unconventional wind conditions selected from a year-long large-eddy simulation on a site at the North Sea are evaluated. Thereto an assessment is made of the practical importance of these wind conditions within an aeroelastic context based on high-fidelity wind modelling. Moreover the accuracy of BEM-based methods for modelling such wind conditions is assessed.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
Beardsell, A., Collier, W., and Han, T.: Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed, J. Phys.: Conf. Ser., 753, 042002, https://doi.org/10.1088/1742-6596/753/4/042002, 2016. a
Berger, F., Höning, L., Herráez, I., and Kühn, M.: Comparison of a radially resolved dynamic inflow pitch step experiment to mid-fidelity
simulations and BEM, J. Phys.: Conf. Ser., 1618, 052055,
https://doi.org/10.1088/1742-6596/1618/5/052055, 2020. a, b
Berger, F., Onnen, D., Schepers, G., and Kühn, M.: Experimental analysis of radially resolved dynamic inflow effects due to pitch steps, Wind Energ.
Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, 2021.
a, b
Berger, F., Neuhaus, L., Onnen, D., Hölling, M., Schepers, G., and Kühn, M.: Experimental analysis of the dynamic inflow effect due to coherent gusts, Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, 2022. a, b, c
Boorsma, K. and Caboni, M.: Numerical analysis and validation of unsteady
aerodynamics for floating offshore wind turbines, Tech. Rep. TNO 2020 R11345,
TNO Wind Energy, Petten, the Netherlands,
http://publications.tno.nl/publication/34637340/MelXUe/TNO-2020-R11345.pdf (last access: 14 February 2023), 2020. a, b, c
oorsma, K., Schepers, G., Gomez-Iradi, S., Schaffarczyk, P., Madsen, H. A., Sørensen, N. N., Shen, W. Z., Lutz, T., Schultz, C., Herraez, I., and Schreck, S.: Final report of IEA Task 29, Mexnext (Phase 2): Analysis of MEXICO wind tunnel measurements, Report ECN-E-14-060, ECN, https://publications.ecn.nl/ECN-E--14-060 (last access: 14 February 2023), 2014. a, b
Boorsma, K., Schepers, J. G., Gomez-Iradi, S., Herraez, I., Lutz, T., Weihing, P., Oggiano, L., Pirrung, G., Madsen, H. A., Shen, W. Z., Rahimi, H., and Schaffarczyk, P.: Final report of IEA Task 29, Mexnext (Phase 3): Analysis of MEXICO wind tunnel measurements, Report ECN-E-18-003, ECN, https://publications.ecn.nl/ECN-E--18-003 (last access: 14 February 2023), 2018. a, b, c, d, e
Ferreira, C., Yu, W., Sala, A., and Viré, A.: Dynamic inflow model for a floating horizontal axis wind turbine in surge motion, Wind Energ. Sci., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022, 2022. a
Hansen, M., Gaunaa, M., and Aagaard Madsen, H.: A Beddoes-Leishman type
dynamic stall model in state-space and indicial formulations, no. 1354(EN) in
Denmark, Risoe-R, Forskningscenter Risoe, https://orbit.dtu.dk/en/publications/a-beddoes-leishman-type-dynamic-stall-model-in-state-space-and-in
(last access: 14 February 2023), 2004. a, b, c, d
Hansen, M. O. L.: Aerodynamics of Wind Turbines, in: 3rd Edn., Earthscan, ISBN 978-1138775077, 2015. a
Hendriks, H. and Bulder, B.: Fatigue Equivalent Load Cycle Method: A General
Method to Compare the Fatigue Loading of Different Load Spectrums, Tech. Rep. ECN-C–95-074, ECN, Petten, the Netherlands,
https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--95-074 (last access: 14 February 2023), 1995. a
IEC 61400-1: Wind energy generation systems – Part 1: Design requirements,
Standard, International Electrotechnical Commission, https://webstore.iec.ch/publication/26423 (last access: 14 February 2023), 2019. a
Larsen, T. and Hansen, A.: How 2 HAWC2, the user's manual, no. 1597 (ver. 3-1)(EN) in Denmark, Risoe-R, Forskningscenter Risoe, Risø National
Laboratory, https://orbit.dtu.dk/en/publications/how-2-hawc2-the-users-manual (last access: 14 February 2023), 2007. a
Lindenburg, C.: PHATAS Release “NOV-2003” and “APR-2005” user's manual,
Report number ECN-I-05005, ECN,
https://publications.tno.nl/publication/34629712/5L30WK/i05005.pdf (last access: 14 February 2023), 2005 a
Mancini, S., Boorsma, K., Caboni, M., Cormier, M., Lutz, T., Schito, P., and
Zasso, A.: Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion, Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, 2020. a
Neuhaus, L., Berger, F., Peinke, J., and Hölling, M.: Exploring the
capabilities of active grids, Exp. Fluids, 62, 130, https://doi.org/10.1007/s00348-021-03224-5, 2021. a
NREL: OpenFAST: Open-source wind turbine simulation tool,
http://github.com/OpenFAST/OpenFAST/, last access: 14 February 2023. a
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and
Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind
turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and
QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5,
721–743, https://doi.org/10.5194/wes-5-721-2020, 2020. a
Pirrung, G. R. and Madsen, H. A.: Dynamic inflow effects in measurements and
high-fidelity computations, Wind Energ. Sci., 3, 545–551,
https://doi.org/10.5194/wes-3-545-2018, 2018. a, b, c
Pitt, D. M. and, Peters D. A.: Rotor dynamic inflow derivatives and time constants from various inflow models, Paper no. 55, in: Ninth European Rotorcraft Forum, 13–15 September 1983,
Stresa, Italy, https://www.researchgate.net/publication/238355026_Theoretical_prediction_of_dynamic-in_ow_derivatives
(last access: 14 February 2023), 1983. a
Schepers, G.: An engineering model for yawed conditions, developed on basis of wind tunnel measurements, ARC, https://doi.org/10.2514/6.1999-39, 1999. a
Schepers, G., Boorsma, K., Sørensen, N., Voutsinas, S., Sieros, G., Rahimi, H., Heisselmann, H., Jost, E., Lutz, T., Maeder, T., Gonzalez, A., Ferreira, C., Stoevesandt, B., Barakos, G., Lampropoulos, N., Croce, A., and Madsen, J.: Final results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines, J. Phys.: Conf. Ser., 1037, 022013,
https://doi.org/10.1088/1742-6596/1037/2/022013, 2018a. a, b, c
Schepers, J. G., Boorsma, K., Sørensen, N., Voutsinas, S. G., Rahimi, H., Heisselmann, H., Jost, E., Lutz, T., Maeder, T., Gonzalez A., Ferreira, C., Stoevesandt, B., Barakos, G., Lampropoulos, N., Croce, A., and Madsen, J.: Final report of the EU project AVATAR: Aerodynamic modelling of 10 MW turbines, Report, ECN, http://www.eera-avatar.eu/publications-results-and-links (last access: 14 February 2023), 2018b. a, b
Schepers, J. G., Boorsma, K., Madsen, H. A., Pirrung, G. R., Bangga, G., Guma, G., Lutz, T., Potentier, T., Braud, C., Guilmineau, E., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B. A., Ivanell, S., Asmuth, H., Bertagnolio, F., Sørensen, N. N., Shen, W. Z., Grinderslev, C., Forsting, A. M., Blondel, F., Bozonnet, P., Boisard, R., Yassin, K., Hoening, L., Stoevesandt, B., Imiela, M., Greco, L., Testa, C., Magionesi, F., Vijayakumar, G., Ananthan, S., Sprague, M. A., Branlard, E., Jonkman, J., Carrion, M., Parkinson, S., and Cicirello, E.: Final report of IEA Task 29 (Phase 4): detailed Aerodynamics of Wind Turbines, IEA Wind TCP Task 29, Zenodo, https://doi.org/10.5281/zenodo.4817875, 2021a. a
Schepers, G., Mancini, S., and Boorsma, K.: Aerodynamic Modelling of Larger
Rotors: the effects of dynamic inflow, in: presentation at the Wind Energy
Science Conference 2021, hybrid, 25–28 May 2021, Hannover, Germany, 2021b. a
van Engelen, T. G. and van der Hooft, E. L.: Dynamic Inflow compensation for
pitch controlled turbines, Report ECN-RX–04-129, ECN, https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-RX--04-129 (last access: 14 February 2023), 2004. a
Winkelaar, D.: SWIFT program for three-dimensional wind simulation: part 1:
Model description and program verification, Report ECN-R–92-013, ECN, https://publications.ecn.nl/O/1992/ECN-R--92-013 (last access: 14 February 2023), 1992. a
Short summary
Modern wind turbines are subject to complex wind conditions that are far from the hypothesis of steady uniform inflow at the core of blade element momentum methods (the current industry standard for wind turbine design). Various corrections have been proposed to model this complexity. The present work focuses on modelling the unsteady evolution of wind turbine wakes (dynamic inflow), comparing the different corrections available and highlighting their effects on design load predictions.
Modern wind turbines are subject to complex wind conditions that are far from the hypothesis of...
Altmetrics
Final-revised paper
Preprint