Articles | Volume 9, issue 5
https://doi.org/10.5194/wes-9-1123-2024
https://doi.org/10.5194/wes-9-1123-2024
Research article
 | 
08 May 2024
Research article |  | 08 May 2024

The multi-scale coupled model: a new framework capturing wind farm–atmosphere interaction and global blockage effects

Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff

Related authors

TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320, https://doi.org/10.5194/wes-9-297-2024,https://doi.org/10.5194/wes-9-297-2024, 2024
Short summary
An LES Model for Wind Farm-Induced Atmospheric Gravity Wave Effects Inside Conventionally Neutral Boundary Layers
Sebastiano Stipa, Mehtab Ahmed Khan, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-171,https://doi.org/10.5194/wes-2023-171, 2024
Revised manuscript accepted for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024,https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci., 9, 555–583, https://doi.org/10.5194/wes-9-555-2024,https://doi.org/10.5194/wes-9-555-2024, 2024
Short summary
An LES Model for Wind Farm-Induced Atmospheric Gravity Wave Effects Inside Conventionally Neutral Boundary Layers
Sebastiano Stipa, Mehtab Ahmed Khan, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-171,https://doi.org/10.5194/wes-2023-171, 2024
Revised manuscript accepted for WES
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-142,https://doi.org/10.5194/wes-2023-142, 2023
Revised manuscript accepted for WES
Short summary
Bayesian method for estimating Weibull parameters for wind resource assessment in a tropical region: a comparison between two-parameter and three-parameter Weibull distributions
Mohammad Golam Mostafa Khan and Mohammed Rafiuddin Ahmed
Wind Energ. Sci., 8, 1277–1298, https://doi.org/10.5194/wes-8-1277-2023,https://doi.org/10.5194/wes-8-1277-2023, 2023
Short summary

Cited articles

Ainslie, J.: Calculating the flowfield in the wake of wind turbines, J. o Wind Eng. Indust. Aerodynam., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a
Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. a, b
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018.  a
Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm-induced gravity waves, J. Fluid Mech., 862, 990–1028, https://doi.org/10.1017/jfm.2018.969, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Allaerts, D., Broucke, S. V., van Lipzig, N., and Meyers, J.: Annual impact of wind-farm gravity waves on the Belgian-Dutch offshore wind-farm cluster, J. Phys.: Conf. Ser., 1037, 072006, https://doi.org/10.1088/1742-6596/1037/7/072006, 2018. a
Download
Short summary
This paper introduces the multi-scale coupled (MSC) model, an engineering framework aimed at modeling turbine–wake and wind farm–gravity wave interactions, as well as local and global blockage effects. Comparisons against large eddy simulations show that the MSC model offers a valid contribution towards advancing our understanding of the coupled wind farm–atmosphere interaction, helping refining power estimation methodologies for existing and future wind farm sites.
Altmetrics
Final-revised paper
Preprint