Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-141-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-141-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drivers for optimum sizing of wind turbines for offshore wind farms
Wind Energy Group, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Michiel Zaaijer
Wind Energy Group, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Dominic von Terzi
Wind Energy Group, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
Mihir Kishore Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 2283–2300, https://doi.org/10.5194/wes-9-2283-2024, https://doi.org/10.5194/wes-9-2283-2024, 2024
Short summary
Short summary
In a subsidy-free era, there is a need to optimize wind turbines for maximizing farm revenue instead of minimizing cost of energy. A wind-farm-level modeling framework with a simplified market model is used to optimize the turbine size for maximum profitability. The results show that the optimum size is driven mainly by the choice of the economic metric and the market price scenario, with a design optimized for the cost of energy already performing well w.r.t. most profitability-based metrics
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-125, https://doi.org/10.5194/wes-2025-125, 2025
Preprint under review for WES
Short summary
Short summary
Wind turbines are increasing in size, pushing blade tips to operate at high speed. This study employs URANS simulations to investigate the unsteady aerodynamic response of a wind turbine airfoil to angle-of-attack changes across the transonic flow threshold. By varying reduced frequency and inflow Mach number, the analysis reveals the impact of compressibility on aerodynamic performance, including a hysteresis effect, which highlights its importance for the design of next-generation rotors.
Simone Chellini, Delphine De Tavernier, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-121, https://doi.org/10.5194/wes-2025-121, 2025
Preprint under review for WES
Short summary
Short summary
Growing interest in high-velocity physics is justifying research in new experimental aerodynamics. Our work provides the knowledge foundations for the next generation of large wind turbine rotors. We highlight airfoil-dependent structures and forces found in a large-scale wind tunnel experiment, for which different trends are observed. Importantly, the results delve into the force enhancement due to dynamic angle of attack oscillation, leading to higher aerodynamic loads for the blade.
Abhyuday Aditya, Delphine De Tavernier, Ferdinand Schrijer, Bas van Oudheusden, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-65, https://doi.org/10.5194/wes-2025-65, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study is the first to experimentally test how wind turbine blades behave at near-supersonic speeds, a condition expected in the largest turbines. In the experiments, we observed unstable and potentially detrimental shock waves that become stronger at higher speeds and angles. Basic prediction tools in wind turbine design miss these details, highlighting the need for better tools and experiments to understand the extreme conditions faced by modern wind turbines.
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci., 10, 695–718, https://doi.org/10.5194/wes-10-695-2025, https://doi.org/10.5194/wes-10-695-2025, 2025
Short summary
Short summary
This paper presents a methodology for assessing the system design and scaling trends in airborne wind energy (AWE). A multi-disciplinary design, analysis, and optimisation (MDAO) framework was developed, integrating power, energy production, and cost models for the fixed-wing ground-generation (GG) AWE concept. Using the levelized cost of electricity (LCoE) as the design objective, we found that the optimal size of systems lies between the rated power of 100 and 1000 kW.
Ricardo Amaral, Felix Houtin-Mongrolle, Dominic von Terzi, Kasper Laugesen, Paul Deglaire, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-34, https://doi.org/10.5194/wes-2025-34, 2025
Manuscript not accepted for further review
Short summary
Short summary
This work uses simulations to investigate floating offshore wind turbines which have the potential to supply the world's electricity demand many times by 2040. In particular, the effect of the rotor motion on the wake was investigated by forcing the turbine to move under different motions and the results highlight differences between motions. While some motions led to a wake behavior that was close to that of a fixed-bottom turbine, other motions produced a remarkably different wake structure.
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 10, 315–346, https://doi.org/10.5194/wes-10-315-2025, https://doi.org/10.5194/wes-10-315-2025, 2025
Short summary
Short summary
The paper investigates the influence of the rain drop diameter on the formation of erosion damage and its implications for erosion-safe mode (ESM). By building an erosion damage model that incorporates several drop-size effects, we found that large droplets are significantly more erosive than small droplets. It is shown that the performance of the ESM is significantly increased when drop-size effects are correctly accounted for. A method to derive optimal ESM strategies is given as well.
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci., 10, 103–116, https://doi.org/10.5194/wes-10-103-2025, https://doi.org/10.5194/wes-10-103-2025, 2025
Short summary
Short summary
Next-generation wind turbines are the largest rotating machines ever built, experiencing local flow Mach where the incompressibility assumption is violated, and even transonic flow can occur. This study assesses the transonic features over the FFA-W3-211 wind turbine tip airfoil for selected industrial test cases, defines the subsonic–supersonic flow threshold and evaluates the Reynolds number effects on transonic flow occurrence. Shock wave occurrence is also depicted.
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 9, 2333–2357, https://doi.org/10.5194/wes-9-2333-2024, https://doi.org/10.5194/wes-9-2333-2024, 2024
Short summary
Short summary
Rain droplets damage wind turbine blades due to the high impact speed at the tip. In this study, it is found that rain droplets and wind turbine blades interact aerodynamically. The rain droplets slow down and deform close to the blade. A model from another field of study was adapted and validated to study this process in detail. This effect reduced the predicted erosion damage by up to 50 %, primarily affecting smaller drops. It is shown how the slowdown effect can influence erosion mitigation.
Mihir Kishore Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 2283–2300, https://doi.org/10.5194/wes-9-2283-2024, https://doi.org/10.5194/wes-9-2283-2024, 2024
Short summary
Short summary
In a subsidy-free era, there is a need to optimize wind turbines for maximizing farm revenue instead of minimizing cost of energy. A wind-farm-level modeling framework with a simplified market model is used to optimize the turbine size for maximum profitability. The results show that the optimum size is driven mainly by the choice of the economic metric and the market price scenario, with a design optimized for the cost of energy already performing well w.r.t. most profitability-based metrics
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023, https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary
Short summary
This paper investigates the effect of wind farm layout on the performance of offshore wind farms. A regular farm layout is compared to optimised irregular layouts. The irregular layouts have higher annual energy production, and the power production is less sensitive to wind direction. However, turbine towers require thicker walls to counteract increased fatigue due to increased turbulence levels in the farm. The study shows that layout optimisation can be used to maintain high-yield performance.
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021, https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
Short summary
We present a technique to support the optimal layout (placement) of wind turbines in a wind farm. It efficiently determines good directions and distances for moving turbines. An improved layout reduces production losses and so makes the farm project economically more attractive. Compared to most existing techniques, our approach requires less time. This allows wind farm designers to explore more alternatives and provides the flexibility to adapt the layout to site-specific requirements.
Cited articles
Andrew Ning, S., Damiani, R., and Moriarty, P. J.: Objectives and constraints for wind turbine optimization, J. Sol Energ. Eng., 136, 041010, https://doi.org/10.1115/1.4027693, 2014. a
Ashuri, T., Zaaijer, M. B., Martins, J. R., and Zhang, J.: Multidisciplinary design optimization of large wind turbines – Technical, economic, and design challenges, Energ. Convers. Manage., 123, 56–70, https://doi.org/10.1016/J.ENCONMAN.2016.06.004, 2016. a, b, c
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Eenergy, 70, 116–123, 2014. a
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, OSTI.GOV, https://doi.org/10.2172/1529216, 2019a. a
Bortolotti, P., Berry, D. S., Murray, R., Gaertner, E., Jenne, D. S., Damiani, R. R., Barter, G. E., and Dykes, K. L.: A Detailed Wind Turbine Blade Cost Model, OSTI.GOV, https://doi.org/10.2172/1529217, 2019b. a
Bortolotti, P., Bay, C., Barter, G., Gaertner, E., Dykes, K., McWilliam, M., Friis-Moller, M., Molgaard Pedersen, M., and Zahle, F.: System Modeling Frameworks for Wind Turbines and Plants: Review and Requirements Specifications, Tech. Rep. March, NREL, https://www.nrel.gov/docs/fy22osti/82621.pdf (last access: 15 October 2023), 2022. a
Chehouri, A., Younes, R., Ilinca, A., and Perron, J.: Review of performance optimization techniques applied to wind turbines, Appl. Energy, 142, 361–388, https://doi.org/10.1016/J.APENERGY.2014.12.043, 2015. a
Dykes, K.: Optimization of Wind Farm Design for Objectives Beyond LCOE, J. Phys.: Conf. Ser., 1618, 042039, https://doi.org/10.1088/1742-6596/1618/4/042039, 2020. a
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Tech. Rep. March, NREL, https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 7 November 2023), 2020. a
Griffith, D. T. and Johanns, W.: Carbon Design Studies for Large Blades: Performance and Cost Tradeoffs for the Sandia 100-meter Wind Turbine Blade, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 8–11 April 2013, Boston, Massachusetts, https://doi.org/10.2514/6.2013-1554, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023. a, b
IRENA – International Renewable Energy Agency: Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), Tech. rep., ISBN 978-92-9260-155-3, https://www.irena.org/-/media/files/irena/agency/publication/2019/oct/irena_future_of_wind_2019.pdf (last access: 10 February 2023), 2019. a, b
Kaiser, M. J. and Snyder, B.: Offshore wind energy cost modeling: installation and decommissioning, in: vol. 85, Springer Science & Business Media, ISBN 9781447124870, 2012. a
Lantz, E., Hand, M., and Wiser, R.: WREF 2012: Past and Future Cost of Wind Energy, OSTI.GOV, https://www.osti.gov/biblio/1061391 (last access: 14 March 2023), 2012. a
Lensink, S. and Pisca, I.: Costs of offshore wind energy 2018, https://www.pbl.nl/sites/default/files/downloads/pbl-2019-costs-of-offshore-wind-energy-2018_3623.pdf (last access: 4 March 2023), 2019. a
Mehta, M.: mihir0210/WINDOW_static: Turbine sizing for electricity and hydrogen production (v3.0_turbine_sizing), Zenodo [code], https://doi.org/10.5281/zenodo.8380355, 2023. a, b, c
NREL: DrivetrainSE – WISDEM 2.0 documentation, https://wisdem.readthedocs.io/en/master/wisdem/drivetrainse/index.html (last access: 15 October 2023), 2015. a
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Rinker, J., and Réthoré, P.-E.: DTUWindEnergy/PyWake: PyWake (v1.0.10), Zenodo [code], https://doi.org/10.5281/zenodo.2562662, 2019. a
Perez-Moreno, S. S., Dykes, K., Merz, K. O., and Zaaijer, M. B.: Multidisciplinary design analysis and optimisation of a reference offshore wind plant, J. Phys.: Conf. Ser., 1037, 042004, https://doi.org/10.1088/1742-6596/1037/4/042004, 2018. a
Rijkswaterstaat: Hollandse Kust (Zuid) wind farm zone including Offshore Wind Farm Luchterduinen (Lud), https://www.noordzeeloket.nl/en/functions-and-use/offshore-wind-energy/free-passage-shared-use/hollandse-kust-zuid-wind-farm-zone-including/ (last access: 24 October 2023), 2021. a
RVO – Rijksdienst voor Ondernemend Nederland: Hollandse Kust (zuid) Wind Farm Zone (Wind Farm Sites III & IV), Tech. rep., https://offshorewind.rvo.nl/file/download/ce29c209-818e-4727-9c44-68c4902e7caa/1540220273rvo hkz iii and iv maindocument_october_2018_lowres_web.pdf (last access: 24 October 2023), 2018. a
Sanchez Perez Moreno, S.: A guideline for selecting MDAO workflows with an application in offshore wind energy, PhD thesis, Delft University of Technology, Delft, ISBN 9789055841745, https://doi.org/10.4233/uuid:ea1b4101-0e55-4abe-9539-ae5d81cf9f65, 2019. a, b
Serafeim, G., Manolas, D., Riziotis, V., and Chaviaropoulos, P.: Multidisciplinary aeroelastic optimization of a 10 MW-scale wind turbine rotor targeting to reduced LCoE, J. Phys.: Conf. Ser., 2265, 042051, https://doi.org/10.1088/1742-6596/2265/4/042051, 2022. a
Shields, M., Beiter, P., Nunemaker, J., Cooperman, A., and Duffy, P.: Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind, Appl. Energy, 298, 117189, https://doi.org/10.1016/J.APENERGY.2021.117189, 2021. a, b, c, d
Sieros, G., Chaviaropoulos, P., Sørensen, J. D., Bulder, B. H., and Jamieson, P.: Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy, Wind Energy, 15, 3–17, https://doi.org/10.1002/WE.527, 2012. a
Smart, G., Smith, A., Warner, E., Sperstad, I. B., Prinsen, B., and Lacal-Arantegui, R.: IEA Wind Task 26: Offshore Wind Farm Baseline Documentation, OSTI.GOV, https://doi.org/10.2172/1259255, 2016. a, b
Tanmay, T.: Multi-disciplinary Optimization of Rotor Nacelle Assemblies for Offshore Wind Farms, MS thesis, Delft University of Technology, Delft, https://repository.tudelft.nl/islandora/object/uuid:d7e2b321-adf8-4a64-97b5-7bad5f644a1f?collection=education (last access: 9 November 2023), 2018. a
Todd Griffith, D. and Johanns, W.: Large Blade Manufacturing Cost Studies Using the Sandia Blade Manufacturing Cost Tool and Sandia 100-meter Blades, Tech. Rep. March, SANDIA, https://energy.sandia.gov/wp-content/gallery/uploads/dlm_uploads/SAND_SNLLargeBladeManufacturingCostTrendsAnalysis_SAND2013-2734.pdf (last access: 10 March 2023), 2013. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., et al.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
Wind & water works: Dutch Offshore Wind Guide: Your guide to Dutch offshore wind policy, technologies and innovations, Tech. rep., https://www.rvo.nl/sites/default/files/2021/10/Dutch Offshore Wind Guide 2022.pdf (last access: 20 February 2023), 2022. a
Zaaijer, M.: Great expectations for offshore wind turbines, PhD thesis, TU Delft, Delft, ISBN 9789053357521, https://repository.tudelft.nl/islandora/object/uuid%3Afd689ba2-3c5f-4e7c-9ccd-55ddbf1679bd (last access: 9 November 2023), 2013. a
Short summary
Turbines are becoming larger. However, it is important to understand the key drivers of turbine design and explore the possibility of a global optimum, beyond which further upscaling might not reduce the cost of energy. This study explores, for a typical farm, the entire turbine design space with respect to rated power and rotor diameter. The results show a global optimum that is subject to various modeling uncertainties, farm design conditions, and policies with respect to wind farm tendering.
Turbines are becoming larger. However, it is important to understand the key drivers of turbine...
Altmetrics
Final-revised paper
Preprint