Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1647-2024
https://doi.org/10.5194/wes-9-1647-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

A large-eddy simulation (LES) model for wind-farm-induced atmospheric gravity wave effects inside conventionally neutral boundary layers

Sebastiano Stipa, Mehtab Ahmed Khan, Dries Allaerts, and Joshua Brinkerhoff

Related authors

The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024,https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
The multi-scale coupled model: a new framework capturing wind farm–atmosphere interaction and global blockage effects
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 1123–1152, https://doi.org/10.5194/wes-9-1123-2024,https://doi.org/10.5194/wes-9-1123-2024, 2024
Short summary
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320, https://doi.org/10.5194/wes-9-297-2024,https://doi.org/10.5194/wes-9-297-2024, 2024
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Estimating the technical wind energy potential of Kansas that incorporates the effect of regional wind resource depletion by wind turbines
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024,https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Mesoscale weather systems and associated potential wind power variations in a midlatitude sea strait (Kattegat)
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 1695–1711, https://doi.org/10.5194/wes-9-1695-2024,https://doi.org/10.5194/wes-9-1695-2024, 2024
Short summary
Linking weather patterns to observed and modelled turbine hub-height winds offshore U.S. West Coast
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-76,https://doi.org/10.5194/wes-2024-76, 2024
Revised manuscript accepted for WES
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024,https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary
Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024,https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary

Cited articles

Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. a, b, c
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. a, b
Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm-induced gravity waves, J. Fluid Mech., 862, 990–1028, https://doi.org/10.1017/jfm.2018.969, 2019.  a, b, c, d, e, f, g, h, i, j, k, l
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Béland, M. and Warn, T.: The Radiation Condition for Transient Rossby Waves, J. Atmos. Sci., 32, 1873–1880, https://doi.org/10.1175/1520-0469(1975)032<1873:TRCFTR>2.0.CO;2, 1975. a
Download
Short summary
We introduce a novel way to model the impact of atmospheric gravity waves (AGWs) on wind farms using high-fidelity simulations while significantly reducing computational costs. The proposed approach is validated across different atmospheric stability conditions, and implications of neglecting AGWs when predicting wind farm power are assessed. This work advances our understanding of the interaction of wind farms with the free atmosphere, ultimately facilitating cost-effective research.
Altmetrics
Final-revised paper
Preprint