Articles | Volume 9, issue 10
https://doi.org/10.5194/wes-9-1885-2024
https://doi.org/10.5194/wes-9-1885-2024
Research article
 | 
07 Oct 2024
Research article |  | 07 Oct 2024

Probabilistic surrogate modeling of damage equivalent loads on onshore and offshore wind turbines using mixture density networks

Deepali Singh, Richard Dwight, and Axelle Viré

Related authors

Data-driven probabilistic surrogate model for floating wind turbine lifetime damage equivalent load prediction
Deepali Singh, Erik Haugen, Kasper Laugesen, Richard P. Dwight, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-24,https://doi.org/10.5194/wes-2025-24, 2025
Preprint under review for WES
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Fatigue
Data-driven surrogate model for wind turbine damage equivalent load
Rad Haghi and Curran Crawford
Wind Energ. Sci., 9, 2039–2062, https://doi.org/10.5194/wes-9-2039-2024,https://doi.org/10.5194/wes-9-2039-2024, 2024
Short summary
Effect of scour on the fatigue life of offshore wind turbines and its prevention through passive structural control
Yu Cao, Ningyu Wu, Jigang Yang, Chao Chen, Ronghua Zhu, and Xugang Hua
Wind Energ. Sci., 9, 1089–1104, https://doi.org/10.5194/wes-9-1089-2024,https://doi.org/10.5194/wes-9-1089-2024, 2024
Short summary
Review of rolling contact fatigue life calculation for oscillating bearings and application-dependent recommendations for use
Oliver Menck and Matthias Stammler
Wind Energ. Sci., 9, 777–798, https://doi.org/10.5194/wes-9-777-2024,https://doi.org/10.5194/wes-9-777-2024, 2024
Short summary
Load case selection for finite element simulations of wind turbine pitch bearings and hubs
Matthias Stammler and Florian Schleich
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-163,https://doi.org/10.5194/wes-2023-163, 2024
Revised manuscript accepted for WES
Short summary
Quantifying the effect of low-frequency fatigue dynamics on offshore wind turbine foundations: a comparative study
Negin Sadeghi, Pietro D'Antuono, Nymfa Noppe, Koen Robbelein, Wout Weijtjens, and Christof Devriendt
Wind Energ. Sci., 8, 1839–1852, https://doi.org/10.5194/wes-8-1839-2023,https://doi.org/10.5194/wes-8-1839-2023, 2023
Short summary

Cited articles

Abdallah, I., Lataniotis, C., and Sudret, B.: Parametric hierarchical kriging for multi-fidelity aero-servo-elastic simulators – Application to extreme loads on wind turbines, Probabilistic Eng. Mech., 55, 67–77, https://doi.org/10.1016/j.probengmech.2018.10.001, 2019. a
Avendaño-Valencia, L. D., Abdallah, I., and Chatzi, E.: Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian process regression, Renew. Energy, 170, 539–561, https://doi.org/10.1016/j.renene.2021.02.003, 2021. a
Bishop, C. M.: Mixture density networks, Tech. rep., Aston University, ISBN NCRG/94/004, 1994. a, b, c
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer New York, https://doi.org/10.1007/978-3-030-57077-4_11, 2006. a
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.: Variational Inference: A Review for Statisticians, J. Am. Stat. Assoc., 112, 859–877, https://doi.org/10.1080/01621459.2017.1285773, 2017. a
Download
Short summary
The selection of a suitable site for the installation of a wind turbine plays an important role in ensuring a safe operating lifetime of the structure. In this study, we show that mixture density networks can accelerate this process by inferring functions from data that can accurately map the environmental conditions to the loads but also propagate the uncertainty from the inflow to the response.
Share
Altmetrics
Final-revised paper
Preprint