Articles | Volume 9, issue 10
https://doi.org/10.5194/wes-9-1885-2024
https://doi.org/10.5194/wes-9-1885-2024
Research article
 | 
07 Oct 2024
Research article |  | 07 Oct 2024

Probabilistic surrogate modeling of damage equivalent loads on onshore and offshore wind turbines using mixture density networks

Deepali Singh, Richard Dwight, and Axelle Viré

Related authors

Force-partitioning analysis of vortex-induced vibrations of wind turbine tower sections
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024,https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
Federico Taruffi, Felipe Novais, and Axelle Viré
Wind Energ. Sci., 9, 343–358, https://doi.org/10.5194/wes-9-343-2024,https://doi.org/10.5194/wes-9-343-2024, 2024
Short summary
On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: an insight based on experiments and multi-fidelity simulations from the OC6 project Phase III
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023,https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022,https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary
Dynamic inflow model for a floating horizontal axis wind turbine in surge motion
Carlos Ferreira, Wei Yu, Arianna Sala, and Axelle Viré
Wind Energ. Sci., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022,https://doi.org/10.5194/wes-7-469-2022, 2022
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Fatigue
Effect of scour on the fatigue life of offshore wind turbines and its prevention through passive structural control
Yu Cao, Ningyu Wu, Jigang Yang, Chao Chen, Ronghua Zhu, and Xugang Hua
Wind Energ. Sci., 9, 1089–1104, https://doi.org/10.5194/wes-9-1089-2024,https://doi.org/10.5194/wes-9-1089-2024, 2024
Short summary
Review of rolling contact fatigue life calculation for oscillating bearings and application-dependent recommendations for use
Oliver Menck and Matthias Stammler
Wind Energ. Sci., 9, 777–798, https://doi.org/10.5194/wes-9-777-2024,https://doi.org/10.5194/wes-9-777-2024, 2024
Short summary
Data-driven surrogate model for wind turbine damage equivalent load
Rad Haghi and Curran Crawford
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-157,https://doi.org/10.5194/wes-2023-157, 2023
Revised manuscript accepted for WES
Short summary
Quantifying the effect of low-frequency fatigue dynamics on offshore wind turbine foundations: a comparative study
Negin Sadeghi, Pietro D'Antuono, Nymfa Noppe, Koen Robbelein, Wout Weijtjens, and Christof Devriendt
Wind Energ. Sci., 8, 1839–1852, https://doi.org/10.5194/wes-8-1839-2023,https://doi.org/10.5194/wes-8-1839-2023, 2023
Short summary
Sensitivity analysis of the effect of wind and wake characteristics on wind turbine loads in a small wind farm
Kelsey Shaler, Amy N. Robertson, and Jason Jonkman
Wind Energ. Sci., 8, 25–40, https://doi.org/10.5194/wes-8-25-2023,https://doi.org/10.5194/wes-8-25-2023, 2023
Short summary

Cited articles

Abdallah, I., Lataniotis, C., and Sudret, B.: Parametric hierarchical kriging for multi-fidelity aero-servo-elastic simulators – Application to extreme loads on wind turbines, Probabilistic Eng. Mech., 55, 67–77, https://doi.org/10.1016/j.probengmech.2018.10.001, 2019. a
Avendaño-Valencia, L. D., Abdallah, I., and Chatzi, E.: Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian process regression, Renew. Energy, 170, 539–561, https://doi.org/10.1016/j.renene.2021.02.003, 2021. a
Bishop, C. M.: Mixture density networks, Tech. rep., Aston University, ISBN NCRG/94/004, 1994. a, b, c
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer New York, https://doi.org/10.1007/978-3-030-57077-4_11, 2006. a
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.: Variational Inference: A Review for Statisticians, J. Am. Stat. Assoc., 112, 859–877, https://doi.org/10.1080/01621459.2017.1285773, 2017. a
Download
Short summary
The selection of a suitable site for the installation of a wind turbine plays an important role in ensuring a safe operating lifetime of the structure. In this study, we show that mixture density networks can accelerate this process by inferring functions from data that can accurately map the environmental conditions to the loads but also propagate the uncertainty from the inflow to the response.
Altmetrics
Final-revised paper
Preprint