Articles | Volume 10, issue 10
https://doi.org/10.5194/wes-10-2257-2025
https://doi.org/10.5194/wes-10-2257-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Dynamic induction control for mitigation of wake-induced power losses: a wind tunnel study under different inflow conditions

Manuel Alejandro Zúñiga Inestroza, Paul Hulsman, Vlaho Petrović, and Martin Kühn

Related authors

Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025,https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
The impact of far-reaching offshore cluster wakes on wind turbine fatigue loads
Arjun Anantharaman, Jörge Schneemann, Frauke Theuer, Laurent Beaudet, Valentin Bernard, Paul Deglaire, and Martin Kühn
Wind Energ. Sci., 10, 1849–1867, https://doi.org/10.5194/wes-10-1849-2025,https://doi.org/10.5194/wes-10-1849-2025, 2025
Short summary
Experimental investigation of wind turbine controllers for the Hybrid-Lambda Rotor
Daniel Ribnitzky, Vlaho Petrovic, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-143,https://doi.org/10.5194/wes-2025-143, 2025
Preprint under review for WES
Short summary
The impact of low-level jets on the power generated by offshore wind turbines
Johannes Paulsen, Jörge Schneemann, Gerald Steinfeld, Frauke Theuer, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-118,https://doi.org/10.5194/wes-2025-118, 2025
Preprint under review for WES
Short summary
A scaling methodology for the Hybrid-Lambda Rotor – characterization and validation in wind tunnel experiments
Daniel Ribnitzky, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 10, 1329–1349, https://doi.org/10.5194/wes-10-1329-2025,https://doi.org/10.5194/wes-10-1329-2025, 2025
Short summary

Cited articles

Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009. a
Bossanyi, E. A.: The Design of closed loop controllers for wind turbines, Wind Energy, 3, 149–163, https://doi.org/10.1002/we.34, 2000. a
Brown, K., Yalla, G., Cheung, L., Frederik, J., Houck, D., deVelder, N., Simley, E., and Fleming, P.: Comparison of wind-farm control strategies under realistic offshore wind conditions: wake quantities of interest, Wind Energ. Sci., 10, 1737–1762, https://doi.org/10.5194/wes-10-1737-2025, 2025. a, b
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., and Meneveau, C.: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer, Journal of Renewable and Sustainable Energy, 2, 013106, https://doi.org/10.1063/1.3289735, 2010. a
Chamorro, L. P., Arndt, R., and Sotiropoulos, F.: Reynolds number dependence of turbulence statistics in the wake of wind turbines, Wind Energy, 15, 733–742, https://doi.org/10.1002/we.501, 2012. a
Download
Short summary
Wake effects cause power losses that degrade wind farm efficiency. This paper presents a wind tunnel investigation of dynamic induction control (DIC), a strategy to mitigate wake losses by improving turbine–flow interactions. WindScanner lidar measurements are used to explore the wake development of model turbines in response to DIC. Our results demonstrate consistent benefits and adaptability under realistic inflow conditions, highlighting DIC’s potential to increase wind farm power production.
Share
Altmetrics
Final-revised paper
Preprint