Articles | Volume 10, issue 3
https://doi.org/10.5194/wes-10-497-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-497-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine-learning-based approach for active monitoring of blade pitch misalignment in wind turbines
Sabrina Milani
CORRESPONDING AUTHOR
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Piazza L. Da Vinci 32, Milan, 20133, Italy
Jessica Leoni
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Piazza L. Da Vinci 32, Milan, 20133, Italy
Stefano Cacciola
Dipartimento di Scienze e Tecnologie Aerospaziali (DAER), Politecnico di Milano, Via La Masa, 34, Milan, 20156, Italy
Alessandro Croce
Dipartimento di Scienze e Tecnologie Aerospaziali (DAER), Politecnico di Milano, Via La Masa, 34, Milan, 20156, Italy
Mara Tanelli
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Piazza L. Da Vinci 32, Milan, 20133, Italy
Related authors
No articles found.
Alessandro Croce, Stefano Cacciola, and Federico Isella
Wind Energ. Sci., 9, 1211–1227, https://doi.org/10.5194/wes-9-1211-2024, https://doi.org/10.5194/wes-9-1211-2024, 2024
Short summary
Short summary
For a few years now, various techniques have been studied to maximize the energy production of a wind farm, that is, from a system consisting of several wind turbines. These wind farm controller techniques are often analyzed individually and can generate loads higher than the design ones on the individual wind turbine. In this paper we study the simultaneous use of two different techniques with the goal of finding the optimal combination that at the same time preserves the design loads.
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023, https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary
Short summary
The power equations of crosswind Ground-Gen and Fly-Gen airborne wind energy systems (AWESs) are refined to include the contribution from the aerodynamic wake. A novel power coefficient is defined by normalizing the aerodynamic power with the wind power passing through a disk with a radius equal to the AWES wingspan, allowing us to compare systems with different wingspans. Ground-Gen and Fly-Gen AWESs are compared in terms of their aerodynamic power potential.
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 999–1016, https://doi.org/10.5194/wes-8-999-2023, https://doi.org/10.5194/wes-8-999-2023, 2023
Short summary
Short summary
Modeling the aerodynamic wake of airborne wind energy systems (AWESs) is crucial to properly estimating power production and to designing such systems. The velocities induced at the AWES from its own wake are studied with a model for the near wake and one for the far wake, using vortex methods. The model is validated with the lifting-line free-vortex wake method implemented in QBlade.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Filippo Trevisi, Iván Castro-Fernández, Gregorio Pasquinelli, Carlo Emanuele Dionigi Riboldi, and Alessandro Croce
Wind Energ. Sci., 7, 2039–2058, https://doi.org/10.5194/wes-7-2039-2022, https://doi.org/10.5194/wes-7-2039-2022, 2022
Short summary
Short summary
The optimal control problem for the flight trajectories of Fly-Gen AWESs is expressed with a novel methodology in the frequency domain through a harmonic balance formulation. The solution gives the optimal trajectory and the optimal control inputs. Optimal trajectories have a circular shape squashed along the vertical direction, and the optimal control inputs can be modeled with only one or two harmonics. Analytical approximations for optimal trajectory characteristics are also given.
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022, https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Short summary
The paper is part of the Grand Challenges Papers for Wind Energy. It provides a status of small wind turbine technology in terms of technical maturity, diffusion, and cost. Then, five grand challenges that are thought to be key to fostering the development of the technology are proposed. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Improvement areas are highlighted, within which 10 key enabling actions are finally proposed to the wind community.
Alessandro Croce, Stefano Cacciola, and Luca Sartori
Wind Energ. Sci., 7, 1–17, https://doi.org/10.5194/wes-7-1-2022, https://doi.org/10.5194/wes-7-1-2022, 2022
Short summary
Short summary
In recent years, research has focused on the development of wind farm controllers with the aim of minimizing interactions between machines and thus improving the production of the wind farm.
In this work we have analyzed the effects of these recent technologies on a single wind turbine, with the aim of understanding the impact of these controllers on the design of the machine itself.
The analyses have shown there are non-negligible effects on some components of the wind turbine.
Joeri Alexis Frederik, Robin Weber, Stefano Cacciola, Filippo Campagnolo, Alessandro Croce, Carlo Bottasso, and Jan-Willem van Wingerden
Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020, https://doi.org/10.5194/wes-5-245-2020, 2020
Short summary
Short summary
The interaction between wind turbines in a wind farm through their wakes is a widely studied research area. Until recently, research was focused on finding constant turbine inputs that optimize the performance of the wind farm. However, recent studies have shown that time-varying, dynamic inputs might be more beneficial. In this paper, the validity of this approach is further investigated by implementing it in scaled wind tunnel experiments and assessing load effects, showing promising results.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89–97, https://doi.org/10.5194/wes-4-89-2019, https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Short summary
This paper describes a new formulation for estimating the wind
inflow at the rotor disk, based on measurements of the blade loads.
The new method improves on previous formulations by exploiting the
rotational symmetry of the problem. Experimental results obtained
with an aeroelastically scaled model in a boundary layer wind
tunnel are used for validating the proposed approach.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018, https://doi.org/10.5194/wes-3-791-2018, 2018
Short summary
Short summary
This work presents a new fully automated method to correct for
pitch misalignment imbalances of wind turbine rotors. The method
has minimal requirements, as it only assumes the availability of a
sensor of sufficient accuracy and bandwidth to detect the 1P
harmonic to the desired precision and the ability to command the
pitch setting of each blade independently from the others.
Extensive numerical simulations are used to demonstrate the new
procedure.
Marta Bertelè, Carlo L. Bottasso, Stefano Cacciola, Fabiano Daher Adegas, and Sara Delport
Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, https://doi.org/10.5194/wes-2-615-2017, 2017
Short summary
Short summary
The rotor of a wind turbine is used to determine some important parameters of the wind, including the direction of the wind vector relative to the rotor disk and horizontal and vertical shears. The method works by using measurements provided by existing onboard load sensors. The observed wind characteristics can be used to implement advanced features in smart wind turbine and wind farm controllers.
Carlo L. Bottasso, Alessandro Croce, Federico Gualdoni, Pierluigi Montinari, and Carlo E. D. Riboldi
Wind Energ. Sci., 1, 297–310, https://doi.org/10.5194/wes-1-297-2016, https://doi.org/10.5194/wes-1-297-2016, 2016
Short summary
Short summary
The paper discusses different concepts for reducing loads on wind turbines using movable blade tips. Passive and semi-passive tip solutions move freely in response to air load fluctuations, while in the active case an actuator drives the tip motion in response to load measurements. The various solutions are compared with a standard blade and with each other in terms of their ability to reduce both fatigue and extreme loads.
Riccardo Riva, Stefano Cacciola, and Carlo Luigi Bottasso
Wind Energ. Sci., 1, 177–203, https://doi.org/10.5194/wes-1-177-2016, https://doi.org/10.5194/wes-1-177-2016, 2016
Short summary
Short summary
This paper presents a method to assess the stability of a wind turbine. The proposed approach uses the recorded time history of the system response and fits to it a periodic reduced-order model that can handle stochastic disturbances. Stability is computed by using Floquet theory on the reduced-order model. Since the method only uses response data, it is applicable to any simulation model as well as to experimental test data. The method is compared to the well-known operational modal analysis.
Pietro Bortolotti, Carlo L. Bottasso, and Alessandro Croce
Wind Energ. Sci., 1, 71–88, https://doi.org/10.5194/wes-1-71-2016, https://doi.org/10.5194/wes-1-71-2016, 2016
Short summary
Short summary
The paper presents a new method to conduct the holistic optimization of a wind turbine. The proposed approach allows one to define the rotor radius and tower height, while simultaneously performing the detailed sizing of rotor and tower. For the rotor, the procedures perform simultaneously the design both from the aerodynamic and structural points of view. The overall optimization seeks a minimum for the cost of energy, while accounting for a wide range of user-defined design constraints.
Related subject area
Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
On the modeling errors of digital twins for load monitoring and fatigue assessment in wind turbine drivetrains
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Active trailing edge flap system fault detection via machine learning
Grand challenges in the digitalisation of wind energy
Overview of normal behavior modeling approaches for SCADA-based wind turbine condition monitoring demonstrated on data from operational wind farms
Assessing the rotor blade deformation and tower–blade tip clearance of a 3.4 MW wind turbine with terrestrial laser scanning
Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations
Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine
Reduction of wind-turbine-generated seismic noise with structural measures
Very low frequency IEPE accelerometer calibration and application to a wind energy structure
Felix C. Mehlan and Amir R. Nejad
Wind Energ. Sci., 10, 417–433, https://doi.org/10.5194/wes-10-417-2025, https://doi.org/10.5194/wes-10-417-2025, 2025
Short summary
Short summary
A digital twin is a virtual representation that mirrors the wind turbine's real behavior through simulation models and sensor measurements and can assist in making key decisions such as planning the replacement of parts. These models and measurements are, of course, not perfect and only give an incomplete picture of the real behavior. This study investigates how large the uncertainty of such models and measurements is and to what extent it affects the decision-making process.
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024, https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Short summary
This study explores a methodology using floater motion and nacelle-based lidar wind speed measurements to estimate the tension and damage equivalent loads (DELs) on floating offshore wind turbines' mooring lines. Results indicate that fairlead tension time series and DELs can be accurately estimated from floater motion time series. Using lidar measurements as model inputs for DEL predictions leads to similar accuracies as using displacement measurements of the floater.
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci., 9, 2063–2086, https://doi.org/10.5194/wes-9-2063-2024, https://doi.org/10.5194/wes-9-2063-2024, 2024
Short summary
Short summary
This study emphasizes the need for effective condition monitoring in permanent magnet offshore wind generators to tackle issues like demagnetization and eccentricity. Utilizing a machine learning model and high-resolution measurements, we explore methods of early fault detection. Our findings indicate that flux monitoring with affordable, easy-to-install stray flux sensors with frequency information offers a promising fault detection strategy for large megawatt-scale offshore wind generators.
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024, https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
Short summary
We explore the effect of blade modifications on offshore wind turbines' performance through a detailed analysis of 12 turbines over 12 years. Introducing the turbine performance integral method, which utilises time-series decomposition that combines various data sources, we uncover how blade wear, repairs and software updates impact efficiency. The findings offer valuable insights into improving wind turbine operations, contributing to the enhancement of renewable energy technologies.
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024, https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary
Short summary
We collate the latest reliability data in operations and maintenance (O&M) for offshore wind turbines, specifically large turbines of 15 MW. We use these data to model O&M of an offshore wind farm at three different sites. We compare two industry-dominant drivetrain configurations in terms of O&M cost for 15 MW turbines and determine if previous results for smaller turbines still hold true. Comparisons between drivetrains are topical within industry, and we produce cost comparisons for them.
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024, https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Short summary
Turbulence is one of the main drivers of fatigue in wind turbines. There is some debate on how to model the turbulence in normal wind conditions in the design phase. To address such debates, we study the fatigue load distribution and reliability following different models of the International Electrotechnical Commission 61400-1 standard. The results show the lesser importance of load uncertainty due to turbulence distribution compared to the uncertainty of material resistance and Miner’s rule.
Andrea Gamberini and Imad Abdallah
Wind Energ. Sci., 9, 181–201, https://doi.org/10.5194/wes-9-181-2024, https://doi.org/10.5194/wes-9-181-2024, 2024
Short summary
Short summary
Active trailing edge flaps can potentially reduce wind turbine (WT) loads. To monitor their performance, we present two methods based on machine learning that identify flap health states, including degraded performance, in normal power production and idling condition. Both methods rely only on sensors commonly available on WTs. One approach properly detects all the flap states if a fault occurs on only one blade. The other approach can identify two specific flap states in all fault scenarios.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Xavier Chesterman, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 8, 893–924, https://doi.org/10.5194/wes-8-893-2023, https://doi.org/10.5194/wes-8-893-2023, 2023
Short summary
Short summary
This paper reviews and implements several techniques that can be used for condition monitoring and failure prediction for wind turbines using SCADA data. The focus lies on techniques that respond to requirements of the industry, e.g., robustness, transparency, computational efficiency, and maintainability. The end result of this research is a pipeline that can accurately detect three types of failures, i.e., generator bearing failures, generator fan failures, and generator stator failures.
Paula Helming, Alex Intemann, Klaus-Peter Webersinke, Axel von Freyberg, Michael Sorg, and Andreas Fischer
Wind Energ. Sci., 8, 421–431, https://doi.org/10.5194/wes-8-421-2023, https://doi.org/10.5194/wes-8-421-2023, 2023
Short summary
Short summary
Using renewable energy such as wind energy is vital. To optimize the energy yield from wind turbines, they have increased in size, leading to large blade deformations. This paper measures these deformations for different wind loads and the distance between the blade and the tower from 170 m away from the wind turbine. The paper proves that the blade deformation increases in the wind direction with increasing wind speed, while the distance between the blade and the tower decreases.
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023, https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93, https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
Short summary
Population based structural health monitoring is a low-cost monitoring campaign. The cost reduction from this type of digital enabled asset management tool is manifested by sharing information, in this case a wind farm foundation, within the population. By sharing the information in the wind farm this reduces the amount of sensors and physical model updating, reducing the cost of the monitoring campaign.
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1533–1550, https://doi.org/10.5194/wes-7-1533-2022, https://doi.org/10.5194/wes-7-1533-2022, 2022
Short summary
Short summary
This paper is the second in a two-part study on lubrication in wind turbine main bearings. Investigations are conducted concerning lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. This includes effects relating to temperature, starvation, grease-thickener interactions and possible non-steady EHL effects. Results predict that the modelled main bearing would be expected to operate under mixed lubrication conditions for a non-negligible proportion of its life.
Rafael Abreu, Daniel Peter, and Christine Thomas
Wind Energ. Sci., 7, 1227–1239, https://doi.org/10.5194/wes-7-1227-2022, https://doi.org/10.5194/wes-7-1227-2022, 2022
Short summary
Short summary
In order to find consensus between wind energy producers and seismologists, we study the possibility of reducing wind turbine noise recorded at seismological stations. We find that drilling half-circular holes in front of the wind turbines helps to reduce the seismic noise. We also study the influence of topographic effects on seismic noise reduction.
Clemens Jonscher, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci., 7, 1053–1067, https://doi.org/10.5194/wes-7-1053-2022, https://doi.org/10.5194/wes-7-1053-2022, 2022
Short summary
Short summary
This work presents a method to use low-noise IEPE sensors in the low-frequency range down to 0.05 Hz. In order to achieve phase and amplitude accuracy with this type of sensor in the low-frequency range, a new calibration procedure for this frequency range was developed. The calibration enables the use of the low-noise IEPE sensors for large structures, such as wind turbines. The calibrated sensors can be used for wind turbine monitoring, such as fatigue monitoring.
Cited articles
Astolfi, D.: A Study of the Impact of Pitch Misalignment on Wind Turbine Performance, Machines, 7, 8, https://doi.org/10.3390/machines7010008, 2019. a
Axelsson, U., Bjork, M., and Haag, C.: Method for balancing a wind turbine, International Patent Number WO 2010/133512 A2, 2010. a
Bauchau, O. A.: Flexible Multibody Dynamics, vol. 176 of Solid Mechanics and Its Applications, Springer Netherlands, 1st edn., ISBN 9789400703353, 2011. a
Bertelè, M., Bottasso, C. L., and Cacciola, S.: Automatic detection and correction of pitch misalignment in wind turbine rotors, Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018, 2018. a, b
Bertelè, M. and Bottasso, C. L.: Automatic detection and correction of aerodynamic and inertial rotor imbalances in wind turbine rotors, J. Phys. Conf. Ser., 2265, 032100, https://doi.org/10.1088/1742-6596/2265/3/032100, 2022. a
Boorsma, K., Schepers, G., Aagard Madsen, H., Pirrung, G., Sørensen, N., Bangga, G., Imiela, M., Grinderslev, C., Meyer Forsting, A., Shen, W. Z., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B., Blondel, F., Gilbert, P., Boisard, R., Höning, L., Greco, L., Testa, C., Branlard, E., Jonkman, J., and Vijayakumar, G.: Progress in the validation of rotor aerodynamic codes using field data, Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, 2023. a
Bottasso, C. L. and Croce, A.: Cp-Lambda user manual, Tech. rep., Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano, Italy, 2009–2018. a
Cacciola, S. and Riboldi, C. E. D.: Equalizing Aerodynamic Blade Loads Through Individual Pitch Control Via Multiblade Multilag Transformation, J. Solar Energ. Eng., 139, 061008, https://doi.org/10.1115/1.4037744, 2017. a
Cacciola, S., Munduate Agud, I., and Bottasso, C. L.: Detection of rotor imbalance, including root cause, severity and location, J. Phys. Conf. Ser., 753, 072003, https://doi.org/10.1088/1742-6596/753/7/072003, 2016. a, b, c
Cacciola, S., Riboldi, C. E. D., and Croce, A.: Monitoring rotor aerodynamic and mass imbalances through a self-balancing control, J. Phys. Conf. Ser., 1037, 032041, https://doi.org/10.1088/1742-6596/1037/3/032041, 2018. a, b
Ceriani, L. and Verme, P.: The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini, The Journal of Economic Inequality, 10, 421–443, https://doi.org/10.1007/s10888-011-9188-x, 2012. a
Dalsgaard, S., Blanke, M., and Brath, P.: Diagnosis of pitch and load effects, International Patent Number WO 2009/059606 A3, 2009. a
Desheng, S., Qian, L., Xin, Z., and Minrong, Z.: Wind turbine variable pitch system fault monitoring method and system, Patent Number CN113586366B, 2021. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-mw reference wind turbine for offshore system development. Tech. Rep. TP-500-38060, Tech. rep., National Renewable Energy Laboratory (NREL), Golden, CO, USA, 2009. a
Kusiak, A. and Verma, A.: A Data-Driven Approach for Monitoring Blade Pitch Faults in Wind Turbines, IEEE T. Sustain. Energy, 2, 87–96, https://doi.org/10.1109/TSTE.2010.2066585, 2011. a, b
Kusnick, J., Douglas, E. A., and Griffith, D. T.: Wind Turbine Rotor Imbalance Detection Using Nacelle and Blade Measurements., Wind Energy, 18, 267–276, https://doi.org/10.1002/we.1696, 2015. a
Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., and Nandi, A. K.: Applications of machine learning to machine fault diagnosis: A review and roadmap, Mech. Syst. Signal Pr., 138, 1–39, https://doi.org/10.1016/j.ymssp.2019.106587, 2020. a
Milani, S., Leoni, J., Cacciola, S., Croce, A., and Tanelli, M.: Automatic Detection and Intensity Classification of Pitch Misalignment of Wind Turbine Blades: a Learning-based Approach, J. Phys. Conf. Ser., 2767, 032010, https://doi.org/10.1088/1742-6596/2767/3/032010, 2024. a, b, c, d
Saathoff, M., Rosemeier, M., Kleinselbeck, T., and Rathmann, B.: Effect of individual blade pitch angle misalignment on the remaining useful life of wind turbines, Wind Energ. Sci., 6, 1079–1087, https://doi.org/10.5194/wes-6-1079-2021, 2021. a
Tang, S., Tian, D., Fang, J., Liu, F., and Zhou, C.: Individual pitch controller characteristics analysis and optimization under aerodynamic imbalanced loads of wind turbines, Energy Reports, 7, 6489–6500, https://doi.org/10.1016/j.egyr.2021.09.114, 2021. a
Wilkinson, M.and Hendriks, B., Spinato, F., and Harman, K.: Methodology and results of the Reliawind reliability field study, in: European Wind Energy Conference (EWEC 2010), Warsaw, Poland, https://durham-repository.worktribe.com/output/1159302 (last access: January 2010), 2010. a
Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., and Qiu, Y.: Wind turbine condition monitoring: technical and commercial challenges, Wind Energy, 17, 673–693, https://doi.org/10.1002/we.1508, 2014. a
Zhong, L. and Fei, X.: Fault determination method and system for variable pitch system of wind turbine generator, Patent Number CN113187674, 2022. a
Short summary
In this paper, we propose a novel machine-learning framework for pitch misalignment detection in wind turbines. Using a minimal set of standard sensors, our method detects misalignments as small as 0.1° and localizes the affected blades. It combines signal processing with a hierarchical classification structure and linear regression for precise severity quantification. Evaluation results validate the approach, showing notable accuracy in misalignment classification, regression, and localization.
In this paper, we propose a novel machine-learning framework for pitch misalignment detection in...
Altmetrics
Final-revised paper
Preprint