Articles | Volume 10, issue 1
https://doi.org/10.5194/wes-10-59-2025
https://doi.org/10.5194/wes-10-59-2025
Research article
 | 
08 Jan 2025
Research article |  | 08 Jan 2025

The effects of wind farm wakes on freezing sea spray in the mid-Atlantic offshore wind energy areas

David Rosencrans, Julie K. Lundquist, Mike Optis, and Nicola Bodini

Related authors

Offshore wind farms modify low-level jets
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-48,https://doi.org/10.5194/wes-2024-48, 2024
Revised manuscript accepted for WES
Short summary
The 2023 National Offshore Wind data set (NOW-23)
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024,https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci., 9, 555–583, https://doi.org/10.5194/wes-9-555-2024,https://doi.org/10.5194/wes-9-555-2024, 2024
Short summary
The sensitivity of the Fitch wind farm parameterization to a three-dimensional planetary boundary layer scheme
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022,https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary

Cited articles

Alexander, M. and Scott, J.: The influence of ENSO on air-sea interaction in the Atlantic, Geophys. Res. Lett., 29, 46-1–46-4, https://doi.org/10.1029/2001GL014347, 2002. 
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, https://doi.org/10.1002/2016JD024896, 2016. 
Archer, C. L., Wu, S., Ma, Y., and Jiménez, P. A.: Two Corrections for Turbulent Kinetic Energy Generated by Wind Farms in the WRF Model, Mon. Weather Rev., 148, 4823–4835, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. 
Atkinson, B. W. and Wu Zhang, J.: Mesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 403–431, https://doi.org/10.1029/96RG02623, 1996. 
Battisti, L., Fedrizzi, R., Brighenti, A., and Laakso, T.: Sea ice and icing risk for offshore wind turbines, Proceedings of the OWEMES, Civitavecchia, Italy 22 April 2006, 20–22, https://www.researchgate.net/publication/228552784_Sea_ice_and_icing_risk_for_offshore_wind_turbines (last access: 8 November 2023), 2006. 
Download
Short summary
The US offshore wind industry is growing rapidly. Expansion into cold climates will subject turbines and personnel to hazardous icing. We analyze the 21-year icing risk for US east coast wind areas based on numerical weather prediction simulations and further assess impacts from wind farm wakes over one winter season. Sea spray icing at 10 m can occur up to 67 h per month. However, turbine–atmosphere interactions reduce icing hours within wind plant areas.
Altmetrics
Final-revised paper
Preprint