Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-427-2018
https://doi.org/10.5194/wes-3-427-2018
Research article
 | 
20 Jun 2018
Research article |  | 20 Jun 2018

Effects of moisture absorption on damage progression and strength of unidirectional and cross-ply fiberglass–epoxy composites

Jake D. Nunemaker, Michael M. Voth, David A. Miller, Daniel D. Samborsky, Paul Murdy, and Douglas S. Cairns

Related authors

Effects of defects in composite wind turbine blades – Part 3: A framework for treating defects as uncertainty variables for blade analysis
Trey W. Riddle, Jared W. Nelson, and Douglas S. Cairns
Wind Energ. Sci., 3, 107–120, https://doi.org/10.5194/wes-3-107-2018,https://doi.org/10.5194/wes-3-107-2018, 2018
Short summary
Effects of defects in composite wind turbine blades – Part 1: Characterization and mechanical testing
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 641–652, https://doi.org/10.5194/wes-2-641-2017,https://doi.org/10.5194/wes-2-641-2017, 2017
Short summary
Effects of defects in composite wind turbine blades – Part 2: Progressive damage modeling of fiberglass-reinforced epoxy composites with manufacturing-induced waves
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 653–669, https://doi.org/10.5194/wes-2-653-2017,https://doi.org/10.5194/wes-2-653-2017, 2017
Short summary

Related subject area

Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022,https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022,https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022,https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022,https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary

Cited articles

Assarar, M., Scida, D., El Mahi, A., Poilane, C., and Ayad, R.: Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres, Mater. Design, 32, 788–795, https://doi.org/10.1016/j.matdes.2010.07.024, 2011. 
Bohse, J.: Acoustic emission characteristics of micro-failure processes in polymer blends and composites, Compos. Sci. Technol., 60, 1213–1226, https://doi.org/10.1016/S0266-3538(00)00060-9, 2000. 
Bourchak, M., Farrow, I., Bond, I., Rowland, C., and Menan, F.: Acoustic emission energy as a fatigue damage parameter for CFRP composites, Int. J. Fatigue, 29, 457–470, 2007. 
Czigány, T., Mohd Ishak, Z. A., and Karger-Kocsis, J.: On the failure mode in dry and hygrothermally aged short fiber-reinforced injection-molded polyarylamide composites by acoustic emission, Appl. Compos. Mater., 2, 313–326, https://doi.org/10.1007/BF00568767, 1995. 
deGroot, P. J., Wijnen, P. A. M., and Janssen, R. B. F.: Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon epoxy composites, Compos. Sci. Technol., 55, 405–412, https://doi.org/10.1016/0266-3538(95)00121-2, 1995. 
Download
Short summary
This paper presents an experimental investigation of the tensile strength of fiberglass–epoxy composites before and after water saturation. The strengths of [0], [90], and [0/90] layups all show a drop in tensile strength. However, investigation of the data, damaged coupons, and acoustic emission events illustrates a change in the mechanism governing final failure between the dry and saturated coupons. This illustrates the complexity of strength prediction of multiple layups after saturation.
Altmetrics
Final-revised paper
Preprint