Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1315-2020
https://doi.org/10.5194/wes-5-1315-2020
Research article
 | 
13 Oct 2020
Research article |  | 13 Oct 2020

Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions

Michael F. Howland, Aditya S. Ghate, Sanjiva K. Lele, and John O. Dabiri

Related authors

Annual wake impacts in and between wind farm clusters modelled by a mesoscale numerical weather prediction model and fast-running engineering models
Sara Porchetta, Michael F. Howland, Ruben Borgers, Sophia Buckingham, and Wim Munters
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-58,https://doi.org/10.5194/wes-2024-58, 2024
Preprint under review for WES
Short summary
Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions
Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 7, 345–365, https://doi.org/10.5194/wes-7-345-2022,https://doi.org/10.5194/wes-7-345-2022, 2022
Short summary
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021,https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary

Related subject area

Control and system identification
Load reduction for wind turbines: an output-constrained, subspace predictive repetitive control approach
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022,https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
A reference open-source controller for fixed and floating offshore wind turbines
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022,https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary

Cited articles

Adaramola, M. and Krogstad, P.-Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, 2011. a
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a, b
Annoni, J., Gebraad, P. M., Scholbrock, A. K., Fleming, P. A., and van Wingerden, J.-W.: Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model, Wind Energy, 19, 1135–1150, 2016. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a, b
Archer, C. L. and Vasel-Be-Hagh, A.: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation, Sustainable Energy Technologies and Assessments, 33, 34–43, 2019. a, b
Short summary
Wake losses significantly reduce the power production of utility-scale wind farms since all wind turbines are operated in a greedy, individual power maximization fashion. In order to mitigate wake losses, collective wind farm operation strategies use wake steering, in which certain turbines are intentionally misaligned with respect to the incoming wind direction. The control strategy developed is dynamic and closed-loop to adapt to changing atmospheric conditions.
Altmetrics
Final-revised paper
Preprint