Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1339–1358, 2020
https://doi.org/10.5194/wes-5-1339-2020

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 1339–1358, 2020
https://doi.org/10.5194/wes-5-1339-2020

Research article 20 Oct 2020

Research article | 20 Oct 2020

Finite element simulations for investigating the strength characteristics of a 5 m composite wind turbine blade

Can Muyan and Demirkan Coker

Related subject area

Material science and structural mechanics
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021,https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Constructing fast and representative analytical models of wind turbine main bearings
James Stirling, Edward Hart, and Abbas Kazemi Amiri
Wind Energ. Sci., 6, 15–31, https://doi.org/10.5194/wes-6-15-2021,https://doi.org/10.5194/wes-6-15-2021, 2021
Short summary
Development of a numerical model of a novel leading edge protection component for wind turbine blades
William Finnegan, Priya Dasan Keeryadath, Rónán Ó Coistealbha, Tomas Flanagan, Michael Flanagan, and Jamie Goggins
Wind Energ. Sci., 5, 1567–1577, https://doi.org/10.5194/wes-5-1567-2020,https://doi.org/10.5194/wes-5-1567-2020, 2020
Short summary
Simplified support structure design for multi-rotor wind turbine systems
Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm
Wind Energ. Sci., 5, 1121–1128, https://doi.org/10.5194/wes-5-1121-2020,https://doi.org/10.5194/wes-5-1121-2020, 2020
Short summary
Beamlike models for the analyses of curved, twisted and tapered horizontal-axis wind turbine (HAWT) blades undergoing large displacements
Giovanni Migliaccio, Giuseppe Ruta, Stefano Bennati, and Riccardo Barsotti
Wind Energ. Sci., 5, 685–698, https://doi.org/10.5194/wes-5-685-2020,https://doi.org/10.5194/wes-5-685-2020, 2020
Short summary

Cited articles

Ansys Inc: Release 17.2, available at: http://www.ansys.com (last access: 22 July 2020), 2017. 
Chen, X., Zhao, W., Zhao, X. L., and Xu, J. Z.: Failure test and finite element simulation of a large wind turbine composite blade under static loading, Energies, 7, 2274–2297, https://doi.org/10.3390/en7042274, 2014. 
Chen, X., Qin, Z., Yang, K., Zhao, X., and Xu, J.: Numerical analysis and experimental investigation of wind turbine blades with innovative features: Structural response and characteristics, Sci. China Technol. Sc., 58, 1–8, https://doi.org/10.1007/s11431-014-5741-8, 2015. 
Chen, X., Zhao, X., and Xu, J.: Revisiting the structural collapse of a 52.3 m composite wind turbine blade in a full-scale bending test, Wind Energy, 20, 1111–1127, https://doi.org/10.1002/we.2087, 2017. 
Chen, X., Berring, P., Madsen, S. H., Branner, K., and Semenov, S.: Understanding progressive failure mechanisms of a wind turbine blade trailing edge section through subcomponent tests and nonlinear FE analysis, Compos. Struct., 214, 422–438, https://doi.org/10.1016/j.compstruct.2019.02.024, 2019. 
Download
Short summary
Wind turbine blade prototypes undergo structural tests before they are used in the field so that any design failure can be detected prior to their operation. In this study, strength characteristics of a small-scale existing 5 m composite wind turbine blade is carried out utilizing the finite-element-method software package Ansys. The results show that the blade exhibits sufficient resistance against buckling. Yet, laminate failure is found to play a major role in the ultimate blade failure.