Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-677-2021
https://doi.org/10.5194/wes-6-677-2021
Research article
 | 
20 May 2021
Research article |  | 20 May 2021

A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure

Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios

Related authors

A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport
Claudio Alexis Rodríguez Castillo, Baran Yeter, Shen Li, Feargal Brennan, and Maurizio Collu
Wind Energ. Sci., 9, 533–554, https://doi.org/10.5194/wes-9-533-2024,https://doi.org/10.5194/wes-9-533-2024, 2024
Short summary
Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93,https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022,https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
Structural optimisation of wind turbine towers based on finite element analysis and genetic algorithm
Lin Wang, Athanasios Kolios, Maria Martinez Luengo, and Xiongwei Liu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-41,https://doi.org/10.5194/wes-2016-41, 2016
Preprint withdrawn
Short summary
CranSLIK v2.0: improving the stochastic prediction of oil spill transport and fate using approximation methods
R. Rutherford, I. Moulitsas, B. J. Snow, A. J. Kolios, and M. De Dominicis
Geosci. Model Dev., 8, 3365–3377, https://doi.org/10.5194/gmd-8-3365-2015,https://doi.org/10.5194/gmd-8-3365-2015, 2015
Short summary

Related subject area

Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022,https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022,https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022,https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022,https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary

Cited articles

Amirafshari, P.: Optimising Non-destructive Examination of newbuilding ship hull structures by developing a data-centric risk and reliability framework based on fracture mechanics, University of Strathclyde, Glasgow, United Kingdom, 2019. 
Amirafshari, P. and Stacey, A.: Review of Available Probabilistic Models of the Crack Growth Parameters in the Paris Equation, International Conference on Ocean, Offshore and Arctic Engineering, 9–14 June 2019, Glasgow, United Kingdom, OMAE2019-961, 2019. 
Amirafshari, P., Barltrop, N., Bharadwaj, U., Wright, M., and Oterkus, S.: A Review of Nondestructive Examination Methods for New-building Ships Undergoing Classification Society Survey, J. Ship Prod. Des., 33, 1–11, 2018. 
Anderson, T. L.: Fracture Mechanics: Fundamentals and Applications, Chapman and Hall/CRC, Boca Raton, USA, 2005. 
Arany, L., Bhattacharya, S., Macdonald, J., and Hogan, S. J.: Design of monopiles for offshore wind turbines in 10 steps, Soil Dyn. Earthq. Eng., 92, 126–152, https://doi.org/10.1016/j.soildyn.2016.09.024, 2017. 
Download
Short summary
One particular problem with structures operating in seas is the so-called fatigue phenomenon. Cyclic loads imposed by waves and winds can cause structural failure after a number of cycles. Traditional methods have some limitations. This paper presents a developed design framework based on fracture mechanics for offshore wind turbine support structures which enables design engineers to maximise the use of available inspection capabilities and optimise the design and inspection, simultaneously.
Altmetrics
Final-revised paper
Preprint