Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari
CORRESPONDING AUTHOR
Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, G4 0LZ, United Kingdom
Feargal Brennan
Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, G4 0LZ, United Kingdom
Athanasios Kolios
CORRESPONDING AUTHOR
Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, G4 0LZ, United Kingdom
Related authors
No articles found.
Claudio Alexis Rodríguez Castillo, Baran Yeter, Shen Li, Feargal Brennan, and Maurizio Collu
Wind Energ. Sci., 9, 533–554, https://doi.org/10.5194/wes-9-533-2024, https://doi.org/10.5194/wes-9-533-2024, 2024
Short summary
Short summary
A detailed review of ocean renewable systems, with focus on offshore wind, for the offshore production of green fuels was conducted. Engineering tools and methodologies and their suitability for the design and operation of offshore H2 systems were reviewed. Distinct from wind electricity generation, the support platforms for offshore H2 systems involve additional requirements and constraints. Challenges and opportunities for the offshore H2 systems are discussed.
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93, https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
Short summary
Population based structural health monitoring is a low-cost monitoring campaign. The cost reduction from this type of digital enabled asset management tool is manifested by sharing information, in this case a wind farm foundation, within the population. By sharing the information in the wind farm this reduces the amount of sensors and physical model updating, reducing the cost of the monitoring campaign.
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022, https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
Short summary
Floating offshore wind technology has high potential but still faces challenges for gaining economic competitiveness to allow commercial market uptake. Hence, design optimization plays a key role; however, the final optimum floater obtained highly depends on the specified optimization problem. Thus, by considering alternative structural realization approaches, not very stringent limitations on the structure and dimensions are required. This way, more innovative floater designs can be captured.
Lin Wang, Athanasios Kolios, Maria Martinez Luengo, and Xiongwei Liu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-41, https://doi.org/10.5194/wes-2016-41, 2016
Preprint withdrawn
Short summary
Short summary
In this work, a structural optimisation model for wind turbine towers has been developed based on a combined parametric FEA (finite element analysis) and GA (genetic algorithm) model. It is demonstrated that the proposed structural optimisation model is capable of accurately and effectively achieving an optimal structural design of wind turbine towers, which significantly improves the efficiency of structural optimisation of wind turbine towers.
R. Rutherford, I. Moulitsas, B. J. Snow, A. J. Kolios, and M. De Dominicis
Geosci. Model Dev., 8, 3365–3377, https://doi.org/10.5194/gmd-8-3365-2015, https://doi.org/10.5194/gmd-8-3365-2015, 2015
Short summary
Short summary
CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a statistical approach that takes into account the random, and hence unpredictable, nature, of the affecting parameters. CranSLIK v2.0 demonstrated significant forecasting improvements by capturing the oil spill accurately in real oil spill validation cases and also proved capable of simulating a broader range of oil spill scenarios, while maintaining the run-time efficiency of the method.
B. J. Snow, I. Moulitsas, A. J. Kolios, and M. De Dominicis
Geosci. Model Dev., 7, 1507–1516, https://doi.org/10.5194/gmd-7-1507-2014, https://doi.org/10.5194/gmd-7-1507-2014, 2014
Related subject area
Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Constructing fast and representative analytical models of wind turbine main bearings
Development of a numerical model of a novel leading edge protection component for wind turbine blades
Finite element simulations for investigating the strength characteristics of a 5 m composite wind turbine blade
Simplified support structure design for multi-rotor wind turbine systems
Beamlike models for the analyses of curved, twisted and tapered horizontal-axis wind turbine (HAWT) blades undergoing large displacements
A novel rotor blade fatigue test setup with elliptical biaxial resonant excitation
The effects of blade structural model fidelity on wind turbine load analysis and computation time
A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection
Determination of natural frequencies and mode shapes of a wind turbine rotor blade using Timoshenko beam elements
Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography
Effects of moisture absorption on damage progression and strength of unidirectional and cross-ply fiberglass–epoxy composites
Benefits of subcomponent over full-scale blade testing elaborated on a trailing-edge bond line design validation
Friction torque of wind-turbine pitch bearings – comparison of experimental results with available models
Effects of defects in composite wind turbine blades – Part 1: Characterization and mechanical testing
Effects of defects in composite wind turbine blades – Part 2: Progressive damage modeling of fiberglass-reinforced epoxy composites with manufacturing-induced waves
Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022, https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Short summary
The article presents a framework to obtain the linear and nonlinear equations of motion of a multibody system including rigid and flexible bodies. The method yields compact symbolic equations of motion. The applications are many, such as time-domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, and digital twins.
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022, https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Short summary
This work provides an accessible introduction to elastohydrodynamic lubrication theory as a precursor to analysis of lubrication in a wind turbine main bearing. Fundamental concepts, derivations and formulas are presented, followed by the more advanced topics of starvation, non-steady effects, surface roughness interactions and grease lubrication.
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022, https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Short summary
The seismic soil–structure interaction of wind turbine support structures is investigated. Wind turbine support structures are modelled as a non-classically damped system, and its seismic loadings are analytically derived by the response spectrum method. To improve the prediction accuracy of the shear force on the footing, a threshold for the allowable modal damping ratio is proposed. The proposed method is capable of effectively estimating seismic loadings on the tower and footing.
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022, https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Short summary
In the wind energy industry, a digital twin is fast becoming a key instrument for the monitoring of a wind turbine blade's life cycle. Here, our introduced model updating with invertible neural networks provides an efficient and powerful technique to represent the real blade as built. This method is applied to a full finite element Timoshenko beam model of a blade to successfully update material and layup parameters. The advantage over state-of-the-art methods is the established inverse model.
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022, https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary
Short summary
Modern rotor blade designs depend on detailed numerical models and simulations. Thus, a validated modeling methodology is fundamental for reliable designs. This paper briefly presents a modeling algorithm for rotor blades, its validation against real-life full-scale blade tests, and the respective test data. The hybrid 3D shell/solid finite-element model is successfully validated against the conducted classical bending tests in flapwise and lead–lag direction as well as novel torsion tests.
James Stirling, Edward Hart, and Abbas Kazemi Amiri
Wind Energ. Sci., 6, 15–31, https://doi.org/10.5194/wes-6-15-2021, https://doi.org/10.5194/wes-6-15-2021, 2021
Short summary
Short summary
This paper considers the modelling of wind turbine main bearings using analytical models. The validity of simplified analytical representations is explored by comparing main-bearing force reactions with those obtained from higher-fidelity 3D finite-element models. Results indicate that good agreement can be achieved between the analytical and 3D models in the case of both non-moment-reacting (such as for a spherical roller bearing) and moment-reacting (such as a tapered roller bearing) set-ups.
William Finnegan, Priya Dasan Keeryadath, Rónán Ó Coistealbha, Tomas Flanagan, Michael Flanagan, and Jamie Goggins
Wind Energ. Sci., 5, 1567–1577, https://doi.org/10.5194/wes-5-1567-2020, https://doi.org/10.5194/wes-5-1567-2020, 2020
Short summary
Short summary
Leading edge erosion is an ever-existing damage issue on wind turbine blades. This paper presents the numerical finite element analysis model for incorporating a new leading edge protection component for offshore applications, which is manufactured from thermoplastic polyurethane, into wind turbine blade designs. The model has been validated against experimental trials at demonstrator level, comparing the deflection and strains during testing, and then applied to a full-scale wind turbine blade.
Can Muyan and Demirkan Coker
Wind Energ. Sci., 5, 1339–1358, https://doi.org/10.5194/wes-5-1339-2020, https://doi.org/10.5194/wes-5-1339-2020, 2020
Short summary
Short summary
Wind turbine blade prototypes undergo structural tests before they are used in the field so that any design failure can be detected prior to their operation. In this study, strength characteristics of a small-scale existing 5 m composite wind turbine blade is carried out utilizing the finite-element-method software package Ansys. The results show that the blade exhibits sufficient resistance against buckling. Yet, laminate failure is found to play a major role in the ultimate blade failure.
Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm
Wind Energ. Sci., 5, 1121–1128, https://doi.org/10.5194/wes-5-1121-2020, https://doi.org/10.5194/wes-5-1121-2020, 2020
Short summary
Short summary
Multi-rotor wind turbine systems show the potential to reduce the levelized cost of energy. In this study a simplified and fast method as a first venture to find an optimal number of rotors and design parameters is presented. A variety of space frame designs are dimensioned based on ultimate loads and buckling, as a preliminary step for later detailed analyses.
Giovanni Migliaccio, Giuseppe Ruta, Stefano Bennati, and Riccardo Barsotti
Wind Energ. Sci., 5, 685–698, https://doi.org/10.5194/wes-5-685-2020, https://doi.org/10.5194/wes-5-685-2020, 2020
Short summary
Short summary
This work addresses the mechanical modelling of complex beamlike structures, which may be curved, twisted and tapered in their reference state and undergo large displacements, 3D cross-sectional warping and small strains. A model suitable for the problem at hand is proposed. It can be used to analyze large deflections under prescribed loads and determine the stress and strain fields in the structure. Analytical and numerical results obtained by applying the proposed modelling approach are shown.
David Melcher, Moritz Bätge, and Sebastian Neßlinger
Wind Energ. Sci., 5, 675–684, https://doi.org/10.5194/wes-5-675-2020, https://doi.org/10.5194/wes-5-675-2020, 2020
Short summary
Short summary
When a new rotor blade is designed, a prototype needs to be qualified by testing in two separate directions before it can be used in the field. These tests are time-consuming and expensive. Combining these two tests into one by applying loads in two directions simultaneously is a possible method to reduce time and costs. This paper presents a new computational method, which is capable of designing these complex tests and shows exemplarily that the combined test is faster than traditional tests.
Ozan Gözcü and David R. Verelst
Wind Energ. Sci., 5, 503–517, https://doi.org/10.5194/wes-5-503-2020, https://doi.org/10.5194/wes-5-503-2020, 2020
Short summary
Short summary
Geometrically nonlinear blade modeling effects on the turbine loads and computation time are investigated in an aero-elastic code based on multibody formulation. A large number of fatigue load cases are used in the study. The results show that the nonlinearities become prominent for large and flexible blades. It is possible to run nonlinear models without significant increase in computational time compared to the linear model by changing the matrix solver type from dense to sparse.
Edward Hart, Benjamin Clarke, Gary Nicholas, Abbas Kazemi Amiri, James Stirling, James Carroll, Rob Dwyer-Joyce, Alasdair McDonald, and Hui Long
Wind Energ. Sci., 5, 105–124, https://doi.org/10.5194/wes-5-105-2020, https://doi.org/10.5194/wes-5-105-2020, 2020
Short summary
Short summary
This paper presents a review of existing theory and practice relating to main bearings for wind turbines. Topics covered include wind conditions and resulting rotor loads, main-bearing models, damage mechanisms and fault detection procedures.
Evgueni Stanoev and Sudhanva Kusuma Chandrashekhara
Wind Energ. Sci., 4, 57–69, https://doi.org/10.5194/wes-4-57-2019, https://doi.org/10.5194/wes-4-57-2019, 2019
Short summary
Short summary
In the frame of a multi-body simulation of a wind turbine, the lowest rotor blade eigenmodes are used to describe their elastic deformations. In this paper, a finite Timoshenko beam element is proposed based on the transfer matrix method. The element stiffness and mass matrices are derived by numerical integration of the differential equations of motion. A numerical example with generic rotor blade data demonstrates the performance of the method in comparison with FAST/ADAMS software results.
Dominik Traphan, Iván Herráez, Peter Meinlschmidt, Friedrich Schlüter, Joachim Peinke, and Gerd Gülker
Wind Energ. Sci., 3, 639–650, https://doi.org/10.5194/wes-3-639-2018, https://doi.org/10.5194/wes-3-639-2018, 2018
Short summary
Short summary
Wind turbines are exposed to harsh weather, leading to surface defects on rotor blades emerging from the first day of operation. Defects
grow quickly and affect the performance of wind turbines. Thus, there is demand for an easily applicable remote-inspection method that is sensitive to small
surface defects. In this work we show that infrared thermography can meet these requirements by visualizing differences in the surface temperature
of the rotor blades downstream of surface defects.
Jake D. Nunemaker, Michael M. Voth, David A. Miller, Daniel D. Samborsky, Paul Murdy, and Douglas S. Cairns
Wind Energ. Sci., 3, 427–438, https://doi.org/10.5194/wes-3-427-2018, https://doi.org/10.5194/wes-3-427-2018, 2018
Short summary
Short summary
This paper presents an experimental investigation of the tensile strength of fiberglass–epoxy composites before and after water saturation. The strengths of [0], [90], and [0/90] layups all show a drop in tensile strength. However, investigation of the data, damaged coupons, and acoustic emission events illustrates a change in the mechanism governing final failure between the dry and saturated coupons. This illustrates the complexity of strength prediction of multiple layups after saturation.
Malo Rosemeier, Gregor Basters, and Alexandros Antoniou
Wind Energ. Sci., 3, 163–172, https://doi.org/10.5194/wes-3-163-2018, https://doi.org/10.5194/wes-3-163-2018, 2018
Short summary
Short summary
This research was conducted with the help of computer models to give argumentation on how the reliability of wind turbine rotor blade structures can be increased using subcomponent testing (SCT) as a supplement to full-scale blade testing (FST). It was found that the use of SCT can significantly reduce the testing time compared to FST while replicating more realistic loading conditions for an outboard blade segment as it occurs in the field.
Matthias Stammler, Fabian Schwack, Norbert Bader, Andreas Reuter, and Gerhard Poll
Wind Energ. Sci., 3, 97–105, https://doi.org/10.5194/wes-3-97-2018, https://doi.org/10.5194/wes-3-97-2018, 2018
Short summary
Short summary
Modern wind turbines all share the ability to turn (pitch) the blades around their main axis. By pitching the blades, the aerodynamic forces created by the blades are controlled. Rolling bearings, consisting of two steel rings and balls that roll on raceways between them, are used to allow pitching. To design pitch drives, it is necessary to know the losses within the bearings. This article describes how such losses have been measured and compares them with calculation models.
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 641–652, https://doi.org/10.5194/wes-2-641-2017, https://doi.org/10.5194/wes-2-641-2017, 2017
Short summary
Short summary
Given the rapid growth and large scale of wind turbines, it is important that wind farms achieve maximum availability by reducing downtime due to maintenance and failures. The Blade Reliability Collaborative, led by Sandia National Laboratories and sponsored by the US DOE, was formed to address this issue. A comprehensive study to characterize and understand the manufacturing flaws common in blades, and their impact on blade life, was performed by measuring and testing commonly included defects.
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 653–669, https://doi.org/10.5194/wes-2-653-2017, https://doi.org/10.5194/wes-2-653-2017, 2017
Short summary
Short summary
The Blade Reliability Collaborative was formed to address wind turbine blade reliability. To better understand and predict these effects, various progressive damage modeling approaches, built upon the characterization previously addressed, were investigated. The results indicate that a combined continuum–discrete approach provides insight into reliability with known defects when used in conjunction with a probabilistic flaw framework.
Morten Hartvig Hansen
Wind Energ. Sci., 1, 271–296, https://doi.org/10.5194/wes-1-271-2016, https://doi.org/10.5194/wes-1-271-2016, 2016
Short summary
Short summary
The modal dynamics of wind turbines are the fingerprints of their responses under the stochastic excitation from the wind field. Commercial wind turbines have typically three-bladed rotors, and their modal dynamics are well understood. Two-bladed turbines are still commercially less successful, and this work also shows that their modal dynamics are significantly more complex than that of turbines with three or more blades.
Cited articles
Amirafshari, P.: Optimising Non-destructive Examination of newbuilding ship hull structures by developing a data-centric risk and reliability framework based on fracture mechanics, University of Strathclyde, Glasgow, United Kingdom, 2019.
Amirafshari, P. and Stacey, A.: Review of Available Probabilistic Models of the Crack Growth Parameters in the Paris Equation, International Conference on Ocean, Offshore and Arctic Engineering, 9–14 June 2019, Glasgow, United Kingdom, OMAE2019-961, 2019.
Amirafshari, P., Barltrop, N., Bharadwaj, U., Wright, M., and Oterkus, S.: A Review of Nondestructive Examination Methods for New-building Ships Undergoing Classification Society Survey, J. Ship Prod. Des., 33, 1–11, 2018.
Anderson, T. L.: Fracture Mechanics: Fundamentals and Applications, Chapman and Hall/CRC, Boca Raton, USA, 2005.
Arany, L., Bhattacharya, S., Macdonald, J., and Hogan, S. J.: Design of monopiles for offshore wind turbines in 10 steps, Soil Dyn. Earthq. Eng., 92, 126–152, https://doi.org/10.1016/j.soildyn.2016.09.024, 2017.
Ayyub, B. M., Akpan, U. O., Rushton, P. A., Koko, T. S., Ross, J., and Lua, J.: Risk-informed inspection of marine vessels, Ship Structures Committee, Washington DC, 2002.
Barltrop, N. D. P. and Adams, A. J.: Dynamics of fixed marine structures, Butterworth-Heinemann, London, 1991.
Baum, S., Von Kalben, C., Maas, A., and Stadler, I.: Analysis and Modelling of the Future Electricity Price Development by taking the Levelized Cost of Electricity and large Battery Storages into Account, 2018 7th Int. Energy Sustain. Conf., New York, IESC 17–18 May 2018, 1–8, https://doi.org/10.1109/IESC.2018.8440005, 2018.
Bertsche, B.: Reliability in automotive and mechanical engineering: determination of component and system reliability, Springer Science & Business Media, Berlin, 2008.
Bhattacharya, B., Basu, R., and Ma, K.: Developing target reliability for novel structures: the case of the Mobile Offshore Base, Mar. Struct., 14, 37–58, 2001.
British Standard: BS 7910:2019, Br. Stand. Institutions, London, 2019.
BS7910, B. S.: BS 7910:2013+A1:2015, Annex J, The British Standard Institutions, London, 2015.
BSI: BS EN 1990: 2002+ A1: Basis of Structural Design, The British Standard Institutions, London, 2005.
BSI7608: Guide to fatigue design and assessment of steel products, BSI Stand. Publ., London, 2015.
Da Costa, L. M., Danziger, B. R., and Lopes, F. D. R.: Prediction of residual driving stresses in piles, Can. Geotech. J., 38, 410–421, https://doi.org/10.1139/cgj-38-2-410, 2001.
DNV: Structural reliability analysis of marine structures, Det Norske Veritas, Høvik, Norway, 1992.
DNV: Fatigue design of offshore steel structures, no. DNV-RP-C203, available at: https://www.dnv.com/oilgas/download/dnvgl-rp-c203-fatigue-design-of-offshore-steel-structures.html (last access: 28 April 2021), 2010.
DNV: Design of offshore wind turbine structures, Det Norske Veritas, Norway, 2013.
DNV: DNVGL-RP-C210-Probabilistic methods for planning of inspection for fatigue cracks in offshore structures, DNV, Norway, 2015.
DNVGL: DNVGL-ST-0126: Support Structures for Wind Turbines, DNV, Oslo, Norw., 2016a.
DNVGL: DNVGL-ST-0437 Loads and site conditions for wind turbines, DNV, Norway, 2016b.
European Environment Agency: Share of EU energy consumption from renewable sources, 2005–2050, available at: https://www.eea.europa.eu/data-and-maps/figures/share-of-eu-energy-consumption (last access: 28 April 2021), 2019.
Førli, O.: Guidelines for Development of NDE Acceptance Criteria, Nordtestest, available at: https://www.nordtest.info/wp/1999/03/06/guidelines-for-development-of-nde-acceptance-criteria-nt-tr-427/ (last access: 28 April 2021), 1999.
Fraile, D., Komusanac, I., and Walsh, C.: Wind energy in Europe: Outlook to 2023, WindEurope Business Intelligence, Brussels, available at: https://www.anev.org/wp-content/uploads/2019/10/Market-outlook-2019.pdf (last access: 28 April 2021) , 2019.
Gentils, T., Wang, L., and Kolios, A.: Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm, Appl. Energ., 199, 187–204, 2017.
Georgiou, G. A.: Probability of Detection (POD) curves: derivation, applications and limitations, Jacobi Consult. Ltd., Health and Safety Executive Research Report, London, 454, 2006.
Hobbacher, A. F.: Recommendations for Fatigue Design of Welded Joints and Components, Springer International Publishing, Cham, 2016.
HSE: HSE's decision-making process, edited by: HSE, HSE, Norwich, 2001.
IEC: 61400-3 (2009) Wind Turbines – Part 3: Design Requirements for Offshore Wind Turbines, The British Standard Institutions, London, 2009.
IEC: BS EN IEC 61400-1: Wind turbines part 1: Design requirements, International Electrotechnical Commission, The British Standard Institutions, London, 2019.
ISO-14971: BS EN ISO 14971: 2012 – Application of risk management to medical devices, The British Standard Institutions, London, 2012.
ISO-31000: BS 31000: Risk management – Principles and guidelines, International Organization for Standardization, Geneva, Switzerland, 2018.
Jonsson, B., Dobmann, G., Hobbacher, A. F., Kassner, M., and Marquis, G.: IIW Guidelines on Weld Quality in Relationship to Fatigue Strength, Springer International Publishing, Cham, 2016.
Lassen, T. and Recho, N.: Fatigue life analyses of welded structures: flaws, John Wiley & Sons, Newport Beach, USA, 2013.
Li, L., Moan, T., and Zhang, B.: Residual stress shakedown in typical weld joints and its effect on fatigue of FPSOs, in ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, 10–15 June 2007, San Diego, https://doi.org/10.1115/OMAE2007-29285, pp. 193–201., 2007.
Lotsberg, I., Sigurdsson, G., Fjeldstad, A., and Moan, T.: Probabilistic methods for planning of inspection for fatigue cracks in offshore structures, Mar. Struct., 46, 167–192, 2016.
Luengo, M. M. and Kolios, A.: Failure mode identification and end of life scenarios of offshore wind turbines: A review, Energies, 8, 8339–8354, https://doi.org/10.3390/en8088339, 2015.
Mehmanparast, A., Brennan, F., and Tavares, I.: Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results, Mater. Design, 114, 494–504, 2017.
Naess, A.: Fatigue handbook: offshore steel structures, Tapir Publishers, Flatasen, Norway, 1985.
Okumoto, Y., Takeda, Y., Mano, M., and Okada, T.: Design of ship hull structures: a practical guide for engineers, Springer Science & Business Media, Berlin, 2009.
PTC: MathCAD Prime 5.0, available at: https://www.mathcad.com/en/ (last access: 28 April 2021), 2019.
Tavner, P.: Offshore wind turbines: Reliability, availability and maintenance, The Institution of Engineering and Technology, London, 2012.
twd: Monopile Fabrication, online, available at: https://twd.nl/suction-bucket-jacket-seafastening-structures/suctionbucketjacket_seafastening_clamps_overview/ (last access: 28 April 2021), 2019.
TWI: Structural Integrity Assessment and Practical Application of BS 7910 Procedures for the Assessment of Flaws in Metallic Structures, TWI.Ltd, Abington, Cambridge, UK, 2015.
TWI.Ltd: CrackWISE®, available at: https://www.twisoftware.com/software/integrity-management-software/crackwise/ (last access: 28 April 2021), 2019.
Van Wingerde, A. M., Van Delft, D. R. V., Packer, J. A., and Janssen, L. G. J.: Survey of support structures for offshore wind turbines, CRC Press, London, 2006.
Zerbst, U., Klinger, C., and Clegg, R.: Fracture mechanics as a tool in failure analysis – Prospects and limitations, Eng. Fail. Anal., 55, 376–410, 2015.
Short summary
One particular problem with structures operating in seas is the so-called fatigue phenomenon. Cyclic loads imposed by waves and winds can cause structural failure after a number of cycles. Traditional methods have some limitations.
This paper presents a developed design framework based on fracture mechanics for offshore wind turbine support structures which enables design engineers to maximise the use of available inspection capabilities and optimise the design and inspection, simultaneously.
One particular problem with structures operating in seas is the so-called fatigue phenomenon....
Altmetrics
Final-revised paper
Preprint