Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 935–948, 2021
https://doi.org/10.5194/wes-6-935-2021
Wind Energ. Sci., 6, 935–948, 2021
https://doi.org/10.5194/wes-6-935-2021
Research article
16 Jun 2021
Research article | 16 Jun 2021

New methods to improve the vertical extrapolation of near-surface offshore wind speeds

Mike Optis et al.

Related authors

Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021,https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021,https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
A Twenty-Year Analysis of Winds in California for Offshore Wind Energy Production Using WRF v4.1.2
Alex Rybchuk, Mike Optis, Julie K. Lundquist, Michael Rossol, and Walt Musial
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-50,https://doi.org/10.5194/gmd-2021-50, 2021
Preprint withdrawn
Short summary
Operational-based annual energy production uncertainty: are its components actually uncorrelated?
Nicola Bodini and Mike Optis
Wind Energ. Sci., 5, 1435–1448, https://doi.org/10.5194/wes-5-1435-2020,https://doi.org/10.5194/wes-5-1435-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Ahsbahs, T., Badger, M., Karagali, I., and Larsén, X. G.: Validation of Sentinel-1A SAR Coastal Wind Speeds Against Scanning LiDAR, Remote Sens., 9, 552–569, https://doi.org/10.3390/rs9060552, 2017. a
Ahsbahs, T., Maclaurin, G., Draxl, C., Jackson, C. R., Monaldo, F., and Badger, M.: US East Coast synthetic aperture radar wind atlas for offshore wind energy, Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, 2020. a, b, c
Atlantic Shores Offshore Wind: Atlantic Shores Floating LiDAR Buoy Data, available at: https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-4_wind.html (last access: 11 June 2021), 2020. a
Baas, P., Bosveld, F., Lenderink, G., van Meijgaard, E., and Holtslag, A. A. M.: How to design single-column model experiments for comparison with observed nocturnal low-level jets, Q. J. Roy. Meteorol. Soc., 136, 671–684, https://doi.org/10.1002/qj.592, 2010. a
Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.: Extrapolating Satellite Winds to Turbine Operating Heights, J. Appl. Meteorol. Clim., 55, 975–991, https://doi.org/10.1175/JAMC-D-15-0197.1, 2015. a, b, c, d
Download
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.