Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-105-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-105-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos
CORRESPONDING AUTHOR
Institute for Wind Energy Systems, Leibniz University Hannover, Appelstr. 9A, 30167 Hanover, Germany
Bernd Haller
Department of Rotor Blades, Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Claudio Balzani
Institute for Wind Energy Systems, Leibniz University Hannover, Appelstr. 9A, 30167 Hanover, Germany
Related authors
Claudio Balzani and Pablo Noever Castelos
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-167, https://doi.org/10.5194/wes-2023-167, 2024
Revised manuscript under review for WES
Short summary
Short summary
Wind turbine rotor blades consist of several subcomponents that are glued together. Such connections are subjected to fatigue loads. This paper analyzes the characteristics of those fatigue loads in trailing edge adhesive joints of three different wind turbine rotor blades. It is shown that the fatigue loads have significant degrees of non-proportionality, which helps engineers to choose a valid fatigue analysis framework and to design more reliable and cost-efficient rotor blades in the future.
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022, https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Short summary
In the wind energy industry, a digital twin is fast becoming a key instrument for the monitoring of a wind turbine blade's life cycle. Here, our introduced model updating with invertible neural networks provides an efficient and powerful technique to represent the real blade as built. This method is applied to a full finite element Timoshenko beam model of a blade to successfully update material and layup parameters. The advantage over state-of-the-art methods is the established inverse model.
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024, https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
Short summary
Aeroelastic stability simulations are needed to guarantee the safety and overall robust design of wind turbines. To increase our confidence in these simulations in the future, the sensitivity of the stability analysis with respect to variability in the structural properties of the wind turbine blades is investigated. Multiple state-of-the-art tools are compared and the study shows that even though the tools predict similar stability behavior, the sensitivity might be significantly different.
Julia Sabrina Gebauer, Felix Konstantin Prigge, Dominik Ahrens, Lars Wein, and Claudio Balzani
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-91, https://doi.org/10.5194/wes-2024-91, 2024
Revised manuscript under review for WES
Short summary
Short summary
The amount of energy that can be extracted from wind depends primarily on the blade geometry, which can be affected by elastic deformations. This paper presents a first study analysing the influence of cross-sectional deformations of a 15 MW wind turbine blade on the aero-elastic simulations. The results show small changes in geometry, and aerodynamic and structural loads even for a test case. These findings show the potential to be particularly important for larger and more flexible blades.
Edgar Werthen, Daniel Hardt, Claudio Balzani, and Christian Hühne
Wind Energ. Sci., 9, 1465–1481, https://doi.org/10.5194/wes-9-1465-2024, https://doi.org/10.5194/wes-9-1465-2024, 2024
Short summary
Short summary
We provide a comprehensive overview showing available cross-sectional approaches and their properties in relation to derived requirements for the design of composite rotor blades. The Jung analytical approach shows the best results for accuracy of stiffness terms (coupling and transverse shear) and stress distributions. Improved performance compared to 2D finite element codes could be achieved, making the approach applicable for optimization problems with a high number of design variables.
Claudio Balzani and Pablo Noever Castelos
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-167, https://doi.org/10.5194/wes-2023-167, 2024
Revised manuscript under review for WES
Short summary
Short summary
Wind turbine rotor blades consist of several subcomponents that are glued together. Such connections are subjected to fatigue loads. This paper analyzes the characteristics of those fatigue loads in trailing edge adhesive joints of three different wind turbine rotor blades. It is shown that the fatigue loads have significant degrees of non-proportionality, which helps engineers to choose a valid fatigue analysis framework and to design more reliable and cost-efficient rotor blades in the future.
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022, https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Short summary
In the wind energy industry, a digital twin is fast becoming a key instrument for the monitoring of a wind turbine blade's life cycle. Here, our introduced model updating with invertible neural networks provides an efficient and powerful technique to represent the real blade as built. This method is applied to a full finite element Timoshenko beam model of a blade to successfully update material and layup parameters. The advantage over state-of-the-art methods is the established inverse model.
Related subject area
Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Constructing fast and representative analytical models of wind turbine main bearings
Development of a numerical model of a novel leading edge protection component for wind turbine blades
Finite element simulations for investigating the strength characteristics of a 5 m composite wind turbine blade
Simplified support structure design for multi-rotor wind turbine systems
Beamlike models for the analyses of curved, twisted and tapered horizontal-axis wind turbine (HAWT) blades undergoing large displacements
A novel rotor blade fatigue test setup with elliptical biaxial resonant excitation
The effects of blade structural model fidelity on wind turbine load analysis and computation time
A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection
Determination of natural frequencies and mode shapes of a wind turbine rotor blade using Timoshenko beam elements
Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography
Effects of moisture absorption on damage progression and strength of unidirectional and cross-ply fiberglass–epoxy composites
Benefits of subcomponent over full-scale blade testing elaborated on a trailing-edge bond line design validation
Friction torque of wind-turbine pitch bearings – comparison of experimental results with available models
Effects of defects in composite wind turbine blades – Part 1: Characterization and mechanical testing
Effects of defects in composite wind turbine blades – Part 2: Progressive damage modeling of fiberglass-reinforced epoxy composites with manufacturing-induced waves
Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022, https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Short summary
The article presents a framework to obtain the linear and nonlinear equations of motion of a multibody system including rigid and flexible bodies. The method yields compact symbolic equations of motion. The applications are many, such as time-domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, and digital twins.
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022, https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Short summary
This work provides an accessible introduction to elastohydrodynamic lubrication theory as a precursor to analysis of lubrication in a wind turbine main bearing. Fundamental concepts, derivations and formulas are presented, followed by the more advanced topics of starvation, non-steady effects, surface roughness interactions and grease lubrication.
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022, https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Short summary
The seismic soil–structure interaction of wind turbine support structures is investigated. Wind turbine support structures are modelled as a non-classically damped system, and its seismic loadings are analytically derived by the response spectrum method. To improve the prediction accuracy of the shear force on the footing, a threshold for the allowable modal damping ratio is proposed. The proposed method is capable of effectively estimating seismic loadings on the tower and footing.
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022, https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Short summary
In the wind energy industry, a digital twin is fast becoming a key instrument for the monitoring of a wind turbine blade's life cycle. Here, our introduced model updating with invertible neural networks provides an efficient and powerful technique to represent the real blade as built. This method is applied to a full finite element Timoshenko beam model of a blade to successfully update material and layup parameters. The advantage over state-of-the-art methods is the established inverse model.
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021, https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Short summary
One particular problem with structures operating in seas is the so-called fatigue phenomenon. Cyclic loads imposed by waves and winds can cause structural failure after a number of cycles. Traditional methods have some limitations.
This paper presents a developed design framework based on fracture mechanics for offshore wind turbine support structures which enables design engineers to maximise the use of available inspection capabilities and optimise the design and inspection, simultaneously.
James Stirling, Edward Hart, and Abbas Kazemi Amiri
Wind Energ. Sci., 6, 15–31, https://doi.org/10.5194/wes-6-15-2021, https://doi.org/10.5194/wes-6-15-2021, 2021
Short summary
Short summary
This paper considers the modelling of wind turbine main bearings using analytical models. The validity of simplified analytical representations is explored by comparing main-bearing force reactions with those obtained from higher-fidelity 3D finite-element models. Results indicate that good agreement can be achieved between the analytical and 3D models in the case of both non-moment-reacting (such as for a spherical roller bearing) and moment-reacting (such as a tapered roller bearing) set-ups.
William Finnegan, Priya Dasan Keeryadath, Rónán Ó Coistealbha, Tomas Flanagan, Michael Flanagan, and Jamie Goggins
Wind Energ. Sci., 5, 1567–1577, https://doi.org/10.5194/wes-5-1567-2020, https://doi.org/10.5194/wes-5-1567-2020, 2020
Short summary
Short summary
Leading edge erosion is an ever-existing damage issue on wind turbine blades. This paper presents the numerical finite element analysis model for incorporating a new leading edge protection component for offshore applications, which is manufactured from thermoplastic polyurethane, into wind turbine blade designs. The model has been validated against experimental trials at demonstrator level, comparing the deflection and strains during testing, and then applied to a full-scale wind turbine blade.
Can Muyan and Demirkan Coker
Wind Energ. Sci., 5, 1339–1358, https://doi.org/10.5194/wes-5-1339-2020, https://doi.org/10.5194/wes-5-1339-2020, 2020
Short summary
Short summary
Wind turbine blade prototypes undergo structural tests before they are used in the field so that any design failure can be detected prior to their operation. In this study, strength characteristics of a small-scale existing 5 m composite wind turbine blade is carried out utilizing the finite-element-method software package Ansys. The results show that the blade exhibits sufficient resistance against buckling. Yet, laminate failure is found to play a major role in the ultimate blade failure.
Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm
Wind Energ. Sci., 5, 1121–1128, https://doi.org/10.5194/wes-5-1121-2020, https://doi.org/10.5194/wes-5-1121-2020, 2020
Short summary
Short summary
Multi-rotor wind turbine systems show the potential to reduce the levelized cost of energy. In this study a simplified and fast method as a first venture to find an optimal number of rotors and design parameters is presented. A variety of space frame designs are dimensioned based on ultimate loads and buckling, as a preliminary step for later detailed analyses.
Giovanni Migliaccio, Giuseppe Ruta, Stefano Bennati, and Riccardo Barsotti
Wind Energ. Sci., 5, 685–698, https://doi.org/10.5194/wes-5-685-2020, https://doi.org/10.5194/wes-5-685-2020, 2020
Short summary
Short summary
This work addresses the mechanical modelling of complex beamlike structures, which may be curved, twisted and tapered in their reference state and undergo large displacements, 3D cross-sectional warping and small strains. A model suitable for the problem at hand is proposed. It can be used to analyze large deflections under prescribed loads and determine the stress and strain fields in the structure. Analytical and numerical results obtained by applying the proposed modelling approach are shown.
David Melcher, Moritz Bätge, and Sebastian Neßlinger
Wind Energ. Sci., 5, 675–684, https://doi.org/10.5194/wes-5-675-2020, https://doi.org/10.5194/wes-5-675-2020, 2020
Short summary
Short summary
When a new rotor blade is designed, a prototype needs to be qualified by testing in two separate directions before it can be used in the field. These tests are time-consuming and expensive. Combining these two tests into one by applying loads in two directions simultaneously is a possible method to reduce time and costs. This paper presents a new computational method, which is capable of designing these complex tests and shows exemplarily that the combined test is faster than traditional tests.
Ozan Gözcü and David R. Verelst
Wind Energ. Sci., 5, 503–517, https://doi.org/10.5194/wes-5-503-2020, https://doi.org/10.5194/wes-5-503-2020, 2020
Short summary
Short summary
Geometrically nonlinear blade modeling effects on the turbine loads and computation time are investigated in an aero-elastic code based on multibody formulation. A large number of fatigue load cases are used in the study. The results show that the nonlinearities become prominent for large and flexible blades. It is possible to run nonlinear models without significant increase in computational time compared to the linear model by changing the matrix solver type from dense to sparse.
Edward Hart, Benjamin Clarke, Gary Nicholas, Abbas Kazemi Amiri, James Stirling, James Carroll, Rob Dwyer-Joyce, Alasdair McDonald, and Hui Long
Wind Energ. Sci., 5, 105–124, https://doi.org/10.5194/wes-5-105-2020, https://doi.org/10.5194/wes-5-105-2020, 2020
Short summary
Short summary
This paper presents a review of existing theory and practice relating to main bearings for wind turbines. Topics covered include wind conditions and resulting rotor loads, main-bearing models, damage mechanisms and fault detection procedures.
Evgueni Stanoev and Sudhanva Kusuma Chandrashekhara
Wind Energ. Sci., 4, 57–69, https://doi.org/10.5194/wes-4-57-2019, https://doi.org/10.5194/wes-4-57-2019, 2019
Short summary
Short summary
In the frame of a multi-body simulation of a wind turbine, the lowest rotor blade eigenmodes are used to describe their elastic deformations. In this paper, a finite Timoshenko beam element is proposed based on the transfer matrix method. The element stiffness and mass matrices are derived by numerical integration of the differential equations of motion. A numerical example with generic rotor blade data demonstrates the performance of the method in comparison with FAST/ADAMS software results.
Dominik Traphan, Iván Herráez, Peter Meinlschmidt, Friedrich Schlüter, Joachim Peinke, and Gerd Gülker
Wind Energ. Sci., 3, 639–650, https://doi.org/10.5194/wes-3-639-2018, https://doi.org/10.5194/wes-3-639-2018, 2018
Short summary
Short summary
Wind turbines are exposed to harsh weather, leading to surface defects on rotor blades emerging from the first day of operation. Defects
grow quickly and affect the performance of wind turbines. Thus, there is demand for an easily applicable remote-inspection method that is sensitive to small
surface defects. In this work we show that infrared thermography can meet these requirements by visualizing differences in the surface temperature
of the rotor blades downstream of surface defects.
Jake D. Nunemaker, Michael M. Voth, David A. Miller, Daniel D. Samborsky, Paul Murdy, and Douglas S. Cairns
Wind Energ. Sci., 3, 427–438, https://doi.org/10.5194/wes-3-427-2018, https://doi.org/10.5194/wes-3-427-2018, 2018
Short summary
Short summary
This paper presents an experimental investigation of the tensile strength of fiberglass–epoxy composites before and after water saturation. The strengths of [0], [90], and [0/90] layups all show a drop in tensile strength. However, investigation of the data, damaged coupons, and acoustic emission events illustrates a change in the mechanism governing final failure between the dry and saturated coupons. This illustrates the complexity of strength prediction of multiple layups after saturation.
Malo Rosemeier, Gregor Basters, and Alexandros Antoniou
Wind Energ. Sci., 3, 163–172, https://doi.org/10.5194/wes-3-163-2018, https://doi.org/10.5194/wes-3-163-2018, 2018
Short summary
Short summary
This research was conducted with the help of computer models to give argumentation on how the reliability of wind turbine rotor blade structures can be increased using subcomponent testing (SCT) as a supplement to full-scale blade testing (FST). It was found that the use of SCT can significantly reduce the testing time compared to FST while replicating more realistic loading conditions for an outboard blade segment as it occurs in the field.
Matthias Stammler, Fabian Schwack, Norbert Bader, Andreas Reuter, and Gerhard Poll
Wind Energ. Sci., 3, 97–105, https://doi.org/10.5194/wes-3-97-2018, https://doi.org/10.5194/wes-3-97-2018, 2018
Short summary
Short summary
Modern wind turbines all share the ability to turn (pitch) the blades around their main axis. By pitching the blades, the aerodynamic forces created by the blades are controlled. Rolling bearings, consisting of two steel rings and balls that roll on raceways between them, are used to allow pitching. To design pitch drives, it is necessary to know the losses within the bearings. This article describes how such losses have been measured and compares them with calculation models.
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 641–652, https://doi.org/10.5194/wes-2-641-2017, https://doi.org/10.5194/wes-2-641-2017, 2017
Short summary
Short summary
Given the rapid growth and large scale of wind turbines, it is important that wind farms achieve maximum availability by reducing downtime due to maintenance and failures. The Blade Reliability Collaborative, led by Sandia National Laboratories and sponsored by the US DOE, was formed to address this issue. A comprehensive study to characterize and understand the manufacturing flaws common in blades, and their impact on blade life, was performed by measuring and testing commonly included defects.
Jared W. Nelson, Trey W. Riddle, and Douglas S. Cairns
Wind Energ. Sci., 2, 653–669, https://doi.org/10.5194/wes-2-653-2017, https://doi.org/10.5194/wes-2-653-2017, 2017
Short summary
Short summary
The Blade Reliability Collaborative was formed to address wind turbine blade reliability. To better understand and predict these effects, various progressive damage modeling approaches, built upon the characterization previously addressed, were investigated. The results indicate that a combined continuum–discrete approach provides insight into reliability with known defects when used in conjunction with a probabilistic flaw framework.
Morten Hartvig Hansen
Wind Energ. Sci., 1, 271–296, https://doi.org/10.5194/wes-1-271-2016, https://doi.org/10.5194/wes-1-271-2016, 2016
Short summary
Short summary
The modal dynamics of wind turbines are the fingerprints of their responses under the stochastic excitation from the wind field. Commercial wind turbines have typically three-bladed rotors, and their modal dynamics are well understood. Two-bladed turbines are still commercially less successful, and this work also shows that their modal dynamics are significantly more complex than that of turbines with three or more blades.
Cited articles
Berg, J. C. and Resor, B. R.: Numerical manufacturing and design tool (NuMAD v2.0) for wind turbine blades : user's guide, United States 2012, https://doi.org/10.2172/1051715, 2012. a
Berring, P., Branner, K., Berggreen, C., and Knudsen, H. W.: Torsional
Performance of Wind Turbine Blades: Part I: Experimental Investigation, in:
16th International Conference on Composite Materials, Kyoto, Japan, 8–13 July 2007. a
Blasques, J. P. A. A.: User's Manual for BECAS: A cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry. Risø DTU – National Laboratory for Sustainable Energy, Denmark, Forskningscenter Risoe, Risoe-R No. 1785(EN), 2012. a
Blasques, J. P. and Stolpe, M.: Multi-material topology optimization of
laminated composite beam cross sections, Compos. Struct., 94,
3278–3289, https://doi.org/10.1016/j.compstruct.2012.05.002, 2012. a, b, c
Bottasso, C. L., Campagnolo, F., Croce, A., Dilli, S., Gualdoni, F., and
Nielsen, M. B.: Structural optimization of wind turbine rotor blades by
multilevel sectional/multibody/3D-FEM analysis, Multibody Syst. Dyn.,
32, 87–116, https://doi.org/10.1007/s11044-013-9394-3, 2014. a
Branner, K., Berring, P., Berggreen, C., and Knudsen, H. W.: Torsional
performance of wind turbine blades – Part II: Numerical validation, in: 16th
International Conference on Composite Materials, Kyoto, Japan, 8–13 July 2007. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Published by DTU Wind Energy (DTU Wind Energy Report-I-0092), 2013. a
Chen, H., Yu, W., and Capellaro, M.: A critical assessment of computer tools
for calculating composite wind turbine blade properties, Wind Energy, 13, 497–516, https://doi.org/10.1002/we.372, 2010. a
Chen, X., Zhao, W., Zhao, X., and Xu, J.: Failure Test and Finite Element
Simulation of a Large Wind Turbine Composite Blade under Static Loading,
Energies, 7, 2274–2297, https://doi.org/10.3390/en7042274, 2014. a
Chen, X., Zhao, X., and Xu, J.: Revisiting the structural collapse of a 52.3 m
composite wind turbine blade in a full-scale bending test, Wind Energy, 20,
1111–1127, https://doi.org/10.1002/we.2087, 2017. a
Chen, X., Semenov, S., McGugan, M., Hjelm Madsen, S., Cem Yeniceli, S.,
Berring, P., and Branner, K.: Fatigue testing of a 14.3 m composite blade
embedded with artificial defects – Damage growth and structural health
monitoring, Compos. Part A-Appl. S., 140,
106189, https://doi.org/10.1016/j.compositesa.2020.106189, 2021. a
Duineveld, N. P.: Structure and Possibilities of the FOCUS Desgin Package, WMC, 2008. a
Eder, M. A. and Bitsche, R. D.: Fracture analysis of adhesive joints in wind
turbine blades, Wind Energy, 18, 1007–1022, https://doi.org/10.1002/we.1744, 2015. a
Greaves, P. and Langston, D.: Torsional testing of wind turbine blades, Conference presentation, Wind Energy Science Conference 2021 in Hannover, 25–28 May 2021. a
Gundlach, J. and Govers, Y.: Experimental modal analysis of aeroelastic
tailored rotor blades in different boundary conditions, J. Phys. Conf. Ser., 1356, 012023, https://doi.org/10.1088/1742-6596/1356/1/012023, 2019. a, b, c
Ha, K., Bätge, M., Melcher, D., and Czichon, S.: Development and feasibility study of segment blade test methodology, Wind Energ. Sci., 5, 591–599, https://doi.org/10.5194/wes-5-591-2020, 2020. a
Jensen, F. M., Falzon, B. G., Ankersen, J., and Stang, H.: Structural testing
and numerical simulation of a 34 m composite wind turbine blade, Compos.
Struct., 76, 52–61, https://doi.org/10.1016/j.compstruct.2006.06.008, 2006. a
Ji, Y. M. and Han, K. S.: Fracture mechanics approach for failure of adhesive
joints in wind turbine blades, Renew. Energ., 65, 23–28,
https://doi.org/10.1016/j.renene.2013.07.004, 2014. a
Knebusch, J., Gundlach, J., and Govers, Y.: A systematic investigation of
common gradient based model updating approaches applied to high-fidelity
test-data of a wind turbine rotor blade, in: Proceedings of the XI
International Conference on Structural Dynamics, 2159–2174, EASDAthens,
in Athens Greece,
23–26 November 2020, https://doi.org/10.47964/1120.9175.19508, 2020. a
Laird, D., Montoya, F., and Malcolm, D.: Finite Element Modeling of Wind
Turbine Blades, p. 354, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, US, https://doi.org/10.2514/6.2005-195, 10–13 January 2005. a
Lekou, D. J., Bacharoudis, K. C., Farinas, A. B., Branner, K., Berring, P., Croce, A., Philippidis, T. P., and de Winkel, G. D.: A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading, in: Proceedings of the 20th International Conference on Composite Materials ICCM20 Secretariat, Copenhagen, Denmark, 19–24 July 2015. a
Marten, D., Wendler, J., Pechlivanoglou, G., Nayeri, C. N., and Paschereit,
C. O.: QBlade: An open source tool for design and simulation of horizontal
and vertical axis wind turbines, International Journal of Emerging Technology
and Advanced Engineering, 3, Feb 2013, 264–269, 2013. a
Overgaard, L. and Lund, E.: Structural collapse of a wind turbine blade. Part
B: Progressive interlaminar failure models, Compos. Part. A-Appl. S., 41, 271–283,
https://doi.org/10.1016/j.compositesa.2009.10.012, 2010. a
Overgaard, L., Lund, E., and Thomsen, O. T.: Structural collapse of a wind
turbine blade. Part A: Static test and equivalent single layered models,
Compos. Part. A-Appl. S., 41, 257–270,
https://doi.org/10.1016/j.compositesa.2009.10.011, 2010. a
Pardo, D. R. and Branner, K.: Finite Element Analysis of the Cross-Section of
Wind Turbine Blades; A Comparison between Shell and 2D-Solid Models, Wind
Engineering, 29, 25–31, https://doi.org/10.1260/0309524054353700, 2005. a
Peeters, M., Santo, G., Degroote, J., and van Paepegem, W.: High-fidelity
finite element models of composite wind turbine blades with shell and solid
elements, Compos. Struct., 200, 521–531,
https://doi.org/10.1016/j.compstruct.2018.05.091, 2018.
a
Reder, M. D., Gonzalez, E., and Melero, J. J.: Wind Turbine Failures – Tackling
current Problems in Failure Data Analysis, J. Phys. Conf. Ser., 753, 072027, https://doi.org/10.1088/1742-6596/753/7/072027, 2016. a
Rosemeier, M.: FEPROC Blade Model Verification – 3D Shell and Beam Model, Zenodo, https://doi.org/10.5281/ZENODO.1493936, 2018. a
Safarian, P.: Finite Element Modeling and Analysis Validation, Conference
presentation, FEMAP Symposium, Seattle, Washington, US, 23 September 2015. a
Teßmer, J., Icpinar, C., Sevinc, A., Daniele, E., Riemschneider, J.,
Hölling, M., and Balzani, C.: Schlussbericht Smart Blades: Technical
Report, 2016. a
Tiedemann, M. and Chen, X.: Experimental study on torsional stiffness of a wind
turbine blade through combined loading, Conference presentation, Wind Energy Science Conference 2021, Hannover, 25–28 May 2021. a
Yu, W., Volovoi, V. V., Hodges, D. H., and Hong, X.: Validation of the
Variational Asymptotic Beam Sectional Analysis, AIAA Journal, 40, 2105–2112,
https://doi.org/10.2514/2.1545, 2002. a
Zahle, F., Réthoré, P.-E., Graf, P., Dykes, K., and Ning, A.:
FUSED-Wind dev, available at: https://github.com/FUSED-Wind (last access: 19 January 2022), 2020. a
Short summary
Modern rotor blade designs depend on detailed numerical models and simulations. Thus, a validated modeling methodology is fundamental for reliable designs. This paper briefly presents a modeling algorithm for rotor blades, its validation against real-life full-scale blade tests, and the respective test data. The hybrid 3D shell/solid finite-element model is successfully validated against the conducted classical bending tests in flapwise and lead–lag direction as well as novel torsion tests.
Modern rotor blade designs depend on detailed numerical models and simulations. Thus, a...
Altmetrics
Final-revised paper
Preprint