Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2393-2022
https://doi.org/10.5194/wes-7-2393-2022
Research article
 | 
08 Dec 2022
Research article |  | 08 Dec 2022

Predicting power ramps from joint distributions of future wind speeds

Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon

Related authors

Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022,https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind
Sarah McElman, Amrit Shankar Verma, and Andrew Goupee
Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025,https://doi.org/10.5194/wes-10-1529-2025, 2025
Short summary
Estimating long-term annual energy production from shorter-time-series data: methods and verification with a 10-year large-eddy simulation of a large offshore wind farm
Bernard Postema, Remco A. Verzijlbergh, Pim van Dorp, Peter Baas, and Harm J. J. Jonker
Wind Energ. Sci., 10, 1471–1484, https://doi.org/10.5194/wes-10-1471-2025,https://doi.org/10.5194/wes-10-1471-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary
Brief communication: A note on the variance of wind speed and turbulence intensity
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025,https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary

Cited articles

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Ben Bouallègue, Z., Heppelmann, T., Theis, S. E., and Pinson, P.: Generation of scenarios from calibrated ensemble forecasts with a dual-ensemble copula-coupling approach, Mon. Weather Rev., 144, 4737–4750, https://doi.org/10.1175/MWR-D-15-0403.1, 2016.  a
Browell, J., Gilbert, C., and Fasiolo, M.: Covariance structures for high-dimensional energy forecasting, Elect. Power Syst. Res., 211, 108446, https://doi.org/10.1016/j.epsr.2022.108446, 2022. a, b
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields, J. Hydrometeorol., 5, 243–262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004. a
Dawid, A. P. and Sebastiani, P.: Coherent dispersion criteria for optimal experimental design, Ann. Stat., 27, 65–81, https://doi.org/10.1214/aos/1018031101, 1999. a
Download
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Share
Altmetrics
Final-revised paper
Preprint