Articles | Volume 8, issue 2
https://doi.org/10.5194/wes-8-173-2023
https://doi.org/10.5194/wes-8-173-2023
Research article
 | 
15 Feb 2023
Research article |  | 15 Feb 2023

Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations

Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen

Related authors

Aerodynamic effects of leading-edge erosion in wind farm flow modeling
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024,https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024,https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci., 9, 2063–2086, https://doi.org/10.5194/wes-9-2063-2024,https://doi.org/10.5194/wes-9-2063-2024, 2024
Short summary
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024,https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
A machine learning-based approach for active monitoring of blades pitch misalignment in wind turbines
Sabrina Milani, Jessica Leoni, Stefano Cacciola, Alessandro Croce, and Mara Tanelli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-100,https://doi.org/10.5194/wes-2024-100, 2024
Revised manuscript accepted for WES
Short summary
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024,https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary

Cited articles

Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018. a, b
Bech, J. I., Johansen, N. F.-J., Madsen, M. B., Hannesdóttir, Á., and Hasager, C. B.: Experimental Study on the Effect of Drop Size in Rain Erosion Test and on Lifetime Prediction of Wind Turbine Blades, available at SSRN 4011160, https://doi.org/10.1016/j.renene.2022.06.127, 2022.  a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Sass, B. H., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Santos Muñoz, D., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Best, A.: The size distribution of raindrops, Q. J. Roy. Meteorol. Soc., 76, 16–36, 1950. a
Bonab, H. R. and Can, F.: A theoretical framework on the ideal number of classifiers for online ensembles in data streams, in: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 24–28 October 2016, Indianapolis, IN, USA, 2053–2056, https://doi.org/10.1145/2983323.2983907, 2016. a
Download
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Altmetrics
Final-revised paper
Preprint