Articles | Volume 8, issue 2
https://doi.org/10.5194/wes-8-173-2023
https://doi.org/10.5194/wes-8-173-2023
Research article
 | 
15 Feb 2023
Research article |  | 15 Feb 2023

Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations

Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen

Related authors

Aerodynamic effects of leading-edge erosion in wind farm flow modeling
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024,https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024,https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024,https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024,https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Machine learning based virtual load sensors for mooring lines using motion and lidar measurements
Moritz Johann Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-25,https://doi.org/10.5194/wes-2024-25, 2024
Revised manuscript accepted for WES
Short summary
Unsupervised anomaly detection of permanent magnet offshore wind generators through electrical and electromagnetic measurements
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-26,https://doi.org/10.5194/wes-2024-26, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018. a, b
Bech, J. I., Johansen, N. F.-J., Madsen, M. B., Hannesdóttir, Á., and Hasager, C. B.: Experimental Study on the Effect of Drop Size in Rain Erosion Test and on Lifetime Prediction of Wind Turbine Blades, available at SSRN 4011160, https://doi.org/10.1016/j.renene.2022.06.127, 2022.  a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Sass, B. H., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Santos Muñoz, D., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Best, A.: The size distribution of raindrops, Q. J. Roy. Meteorol. Soc., 76, 16–36, 1950. a
Bonab, H. R. and Can, F.: A theoretical framework on the ideal number of classifiers for online ensembles in data streams, in: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 24–28 October 2016, Indianapolis, IN, USA, 2053–2056, https://doi.org/10.1145/2983323.2983907, 2016. a
Download
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Altmetrics
Final-revised paper
Preprint