Articles | Volume 8, issue 6
https://doi.org/10.5194/wes-8-947-2023
https://doi.org/10.5194/wes-8-947-2023
Research article
 | 
07 Jun 2023
Research article |  | 07 Jun 2023

Grand challenges in the digitalisation of wind energy

Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding

Related authors

Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022,https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Research challenges and needs for the deployment of wind energy in hilly and mountainous regions
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022,https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
The Power Curve Working Group's assessment of wind turbine power performance prediction methods
Joseph C. Y. Lee, Peter Stuart, Andrew Clifton, M. Jason Fields, Jordan Perr-Sauer, Lindy Williams, Lee Cameron, Taylor Geer, and Paul Housley
Wind Energ. Sci., 5, 199–223, https://doi.org/10.5194/wes-5-199-2020,https://doi.org/10.5194/wes-5-199-2020, 2020
Short summary
Atmospheric turbulence affects wind turbine nacelle transfer functions
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 2, 295–306, https://doi.org/10.5194/wes-2-295-2017,https://doi.org/10.5194/wes-2-295-2017, 2017
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024,https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Active trailing edge flap system fault detection via machine learning
Andrea Gamberini and Imad Abdallah
Wind Energ. Sci., 9, 181–201, https://doi.org/10.5194/wes-9-181-2024,https://doi.org/10.5194/wes-9-181-2024, 2024
Short summary
Overview of normal behavior modeling approaches for SCADA-based wind turbine condition monitoring demonstrated on data from operational wind farms
Xavier Chesterman, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 8, 893–924, https://doi.org/10.5194/wes-8-893-2023,https://doi.org/10.5194/wes-8-893-2023, 2023
Short summary
Assessing the rotor blade deformation and tower–blade tip clearance of a 3.4 MW wind turbine with terrestrial laser scanning
Paula Helming, Alex Intemann, Klaus-Peter Webersinke, Axel von Freyberg, Michael Sorg, and Andreas Fischer
Wind Energ. Sci., 8, 421–431, https://doi.org/10.5194/wes-8-421-2023,https://doi.org/10.5194/wes-8-421-2023, 2023
Short summary
Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023,https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary

Cited articles

Acumen: Telecom Equipment Market Size, Share, Analysis Report By Component (Hardware, Software), By Infrastructure (Wired, Wireless), By Technology (2G and 3G, 4G LTE, 5G), By End-user (BFSI, Retail, IT and Telecommunication, Media and Entertainment, Healthcare, Military and Defense, Consumer Electronics, Others), And Region Forecast, 2022–2030, https://www.acumenresearchandconsulting.com/telecom-equipment-market, last access: 1 February 2023. a
Ahmed, M. A. and Kim, Y.-C.: Communication network architectures for smart-wind power farms, Energies, 7, 3900–3921, 2014. a
Anderson, M. and Mortensen, N.: Comparative Resource and Energy Yield Assessment Procedures (CREYAP) Pt. II, AWEA Wind Resource & Project Energy Assessment Seminar, 10–11 December 2013, Las Vegas, NV, USA, https://orbit.dtu.dk/en/publications/comparative-resource-and-energy-yield-assessment-procedures (last access: 1 February 2023), 2013. a
Bach-Andersen, M., Winther, O., and Rømer-Odgaard, B.: Scalable systems for early fault detection in wind turbines: a data driven approach, in: Annual Conference of the European Wind Energy Association, 17–20 November 2015, Paris, France, https://www.ewea.org/annual2015/conference/submit-an-abstract/pdf/6401120788396.pdf (last access: 1 February 2023), 2015. a
Benjamin, M., Gagnon, P., Rostamzadeh, N., Pal, C., Bengio, Y., and Shee, A.: Towards Standardization of Data Licenses: The Montreal Data License, arxiv [preprint], https://doi.org/10.48550/ARXIV.1903.12262, 2019.  a
Download
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings grand challenges around data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Altmetrics
Final-revised paper
Preprint