Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1393-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1393-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the impact of waves and platform dynamics on floating wind-turbine energy production
Alessandro Fontanella
CORRESPONDING AUTHOR
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Giorgio Colpani
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Marco De Pascali
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Sara Muggiasca
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Marco Belloli
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Related authors
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-140, https://doi.org/10.5194/wes-2024-140, 2024
Preprint under review for WES
Short summary
Short summary
The article investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Alessandro Fontanella, Elio Daka, Felipe Novais, and Marco Belloli
Wind Energ. Sci., 8, 1351–1368, https://doi.org/10.5194/wes-8-1351-2023, https://doi.org/10.5194/wes-8-1351-2023, 2023
Short summary
Short summary
This study aims to enhance wind turbine modeling by incorporating industry-standard control functionalities. A control design framework was developed and applied to a 1 : 100 scale model of a large floating wind turbine. Wind tunnel tests confirmed the scaled turbine accurately reproduced the steady-state rotor speed, blade pitch, and thrust torque characteristics of the full-size turbine. However, challenges arose in simulating the turbine's aerodynamic response during above-rated operation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Alessandro Fontanella, Alan Facchinetti, Simone Di Carlo, and Marco Belloli
Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, https://doi.org/10.5194/wes-7-1711-2022, 2022
Short summary
Short summary
The aerodynamics of floating wind turbines is complicated by large motions permitted by the foundation. The interaction between turbine, wind, and wake is not yet fully understood. The wind tunnel experiments of this paper shed light on the aerodynamic force and wake response of the floating IEA 15 MW turbine subjected to platform motion as would occur during normal operation. This will help future research on turbine and wind farm control.
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, https://doi.org/10.5194/wes-6-1169-2021, 2021
Short summary
Short summary
The scale model wind tunnel experiment presented in this paper investigated the aerodynamic response of a floating turbine subjected to imposed surge motion. The problem is studied under different aspects, from airfoil aerodynamics to wake, in a coherent manner. Results show quasi-static behavior for reduced frequencies lower than 0.5 and possible unsteadiness for higher surge motion frequencies. Data are made available to the public for future verification and calibration of numerical models.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-140, https://doi.org/10.5194/wes-2024-140, 2024
Preprint under review for WES
Short summary
Short summary
The article investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Alessandro Fontanella, Elio Daka, Felipe Novais, and Marco Belloli
Wind Energ. Sci., 8, 1351–1368, https://doi.org/10.5194/wes-8-1351-2023, https://doi.org/10.5194/wes-8-1351-2023, 2023
Short summary
Short summary
This study aims to enhance wind turbine modeling by incorporating industry-standard control functionalities. A control design framework was developed and applied to a 1 : 100 scale model of a large floating wind turbine. Wind tunnel tests confirmed the scaled turbine accurately reproduced the steady-state rotor speed, blade pitch, and thrust torque characteristics of the full-size turbine. However, challenges arose in simulating the turbine's aerodynamic response during above-rated operation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Federico Taruffi, Simone Di Carlo, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 8, 71–84, https://doi.org/10.5194/wes-8-71-2023, https://doi.org/10.5194/wes-8-71-2023, 2023
Short summary
Short summary
The work focuses on the experimental validation of the design of a large-scale wind turbine model, based on the DTU 10 MW reference wind turbine, installed on a scaled multipurpose platform deployed in an outdoor natural laboratory. The aim of the validation is to assess whether the behaviour of the model respects the targets established during the design phase in terms of structure, rotor aerodynamics and control. The outcome of the investigation ensures the validity of the design process.
Alessandro Fontanella, Alan Facchinetti, Simone Di Carlo, and Marco Belloli
Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, https://doi.org/10.5194/wes-7-1711-2022, 2022
Short summary
Short summary
The aerodynamics of floating wind turbines is complicated by large motions permitted by the foundation. The interaction between turbine, wind, and wake is not yet fully understood. The wind tunnel experiments of this paper shed light on the aerodynamic force and wake response of the floating IEA 15 MW turbine subjected to platform motion as would occur during normal operation. This will help future research on turbine and wind farm control.
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, https://doi.org/10.5194/wes-6-1169-2021, 2021
Short summary
Short summary
The scale model wind tunnel experiment presented in this paper investigated the aerodynamic response of a floating turbine subjected to imposed surge motion. The problem is studied under different aspects, from airfoil aerodynamics to wake, in a coherent manner. Results show quasi-static behavior for reduced frequencies lower than 0.5 and possible unsteadiness for higher surge motion frequencies. Data are made available to the public for future verification and calibration of numerical models.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Related subject area
Thematic area: Dynamics and control | Topic: Wind turbine control
Brief communication: Real-time estimation of the optimal tip-speed ratio for controlling wind turbines with degraded blades
On the robustness of a blade-load-based wind speed estimator to dynamic pitch control strategies
The potential of wave feedforward control for floating wind turbines: a wave tank experiment
Combining wake redirection and derating strategies in a load-constrained wind farm power maximization
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar
Wind vane correction during yaw misalignment for horizontal-axis wind turbines
Increased power gains from wake steering control using preview wind direction information
Analysis and multi-objective optimisation of wind turbine torque control strategies
Damping analysis of floating offshore wind turbines (FOWTs): a new control strategy reducing the platform vibrations
Assessing lidar-assisted feedforward and multivariable feedback controls for large floating wind turbines
Prognostics-based adaptive control strategy for lifetime control of wind turbines
Platform yaw drift in upwind floating wind turbines with single-point-mooring system and its mitigation by individual pitch control
Evaluation of lidar-assisted wind turbine control under various turbulence characteristics
FarmConners wind farm flow control benchmark – Part 1: Blind test results
Demonstration of a fault impact reduction control module for wind turbines
Lidar-assisted model predictive control of wind turbine fatigue via online rainflow counting considering stress history
Devesh Kumar and Mario A. Rotea
Wind Energ. Sci., 9, 2133–2146, https://doi.org/10.5194/wes-9-2133-2024, https://doi.org/10.5194/wes-9-2133-2024, 2024
Short summary
Short summary
The performance of a wind turbine is affected by blade surface degradation due to wear and tear, dirt, bugs, and icing. As blades degrade, optimal operating points such as the tip-speed ratio (TSR) can change. Re-tuning the TSR to its new optimal value can lead to recovery of energy losses under blade degradation. In this work, we utilize a real-time algorithm to re-tune the TSR to its new unknown optimal value under blade degradation and demonstrate energy gains using simulations.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 1669–1688, https://doi.org/10.5194/wes-9-1669-2024, https://doi.org/10.5194/wes-9-1669-2024, 2024
Short summary
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Alessandro Croce, Stefano Cacciola, and Federico Isella
Wind Energ. Sci., 9, 1211–1227, https://doi.org/10.5194/wes-9-1211-2024, https://doi.org/10.5194/wes-9-1211-2024, 2024
Short summary
Short summary
For a few years now, various techniques have been studied to maximize the energy production of a wind farm, that is, from a system consisting of several wind turbines. These wind farm controller techniques are often analyzed individually and can generate loads higher than the design ones on the individual wind turbine. In this paper we study the simultaneous use of two different techniques with the goal of finding the optimal combination that at the same time preserves the design loads.
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024, https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
Wei Fu, Feng Guo, David Schlipf, and Alfredo Peña
Wind Energ. Sci., 8, 1893–1907, https://doi.org/10.5194/wes-8-1893-2023, https://doi.org/10.5194/wes-8-1893-2023, 2023
Short summary
Short summary
A high-quality preview of the rotor-effective wind speed is a key element of the benefits of feedforward pitch control. We model a one-beam lidar in the spinner of a 15 MW wind turbine. The lidar rotates with the wind turbine and scans the inflow in a circular pattern, mimicking a multiple-beam lidar at a lower cost. We found that a spinner-based one-beam lidar provides many more control benefits than the one on the nacelle, which is similar to a four-beam nacelle lidar for feedforward control.
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023, https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Short summary
This study examines wind vane measurements of commercial wind turbines and their impact on yaw control. The authors discovered that rotor interference can cause an overestimation of wind vane measurements, leading to overcorrection of the yaw controller. A correction function that improves the yaw behaviour is presented and validated in free-field experiments on a commercial wind turbine. This work provides new insights into wind direction measurements and suggests ways to optimize yaw control.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Matteo Capaldo and Paul Mella
Wind Energ. Sci., 8, 1319–1339, https://doi.org/10.5194/wes-8-1319-2023, https://doi.org/10.5194/wes-8-1319-2023, 2023
Short summary
Short summary
The controller impacts the movements, loads and yield of wind turbines.
Standard controllers are not adapted for floating, and they can lead to underperformances and overloads. New control strategies, considering the coupling between the floating dynamics and the rotor dynamics, are necessary to reduce platform movements and to improve performances. This work proposes a new control strategy adapted to floating wind, showing a reduction in loads without affecting the power production.
Feng Guo and David Schlipf
Wind Energ. Sci., 8, 1299–1317, https://doi.org/10.5194/wes-8-1299-2023, https://doi.org/10.5194/wes-8-1299-2023, 2023
Short summary
Short summary
This paper assesses lidar-assisted collective pitch feedforward (LACPF) and multi-variable feedback (MVFB) controls for the IEA 15.0 MW reference turbine. The main contributions of this work include (a) optimizing a four-beam pulsed lidar for a large turbine, (b) optimal tuning of speed regulation gains and platform feedback gains for the MVFB and LACPF controllers, and (c) assessing the benefits of the two control strategies using realistic offshore turbulence spectral characteristics.
Edwin Kipchirchir, M. Hung Do, Jackson G. Njiri, and Dirk Söffker
Wind Energ. Sci., 8, 575–588, https://doi.org/10.5194/wes-8-575-2023, https://doi.org/10.5194/wes-8-575-2023, 2023
Short summary
Short summary
In this work, an adaptive control strategy for controlling the lifetime of wind turbine components is proposed. Performance of the lifetime controller is adapted based on real-time health status of the rotor blades to guarantee a predefined lifetime. It shows promising results in lifetime control of blades without speed regulation and tower load mitigation trade-off. It can be applied in optimizing maintenance scheduling of wind farms, which increases reliability and reduces maintenance costs.
Iñaki Sandua-Fernández, Felipe Vittori, Raquel Martín-San-Román, Irene Eguinoa, and José Azcona-Armendáriz
Wind Energ. Sci., 8, 277–288, https://doi.org/10.5194/wes-8-277-2023, https://doi.org/10.5194/wes-8-277-2023, 2023
Short summary
Short summary
This work analyses in detail the causes of the yaw drift in floating offshore wind turbines with a single-point-mooring system induced by an upwind wind turbine. The ability of an individual pitch control strategy based on yaw misalignment is demonstrated through simulations using the NREL 5 MW wind turbine mounted on a single-point-mooring version of the DeepCwind OC4 floating platform. This effect is considered to be relevant for all single-point-moored concepts.
Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 8, 149–171, https://doi.org/10.5194/wes-8-149-2023, https://doi.org/10.5194/wes-8-149-2023, 2023
Short summary
Short summary
The benefits of lidar-assisted control are evaluated using both the Mann model and Kaimal model-based 4D turbulence, considering the variation of turbulence parameters. Simulations are performed for the above-rated mean wind speed, using the NREL 5.0 MW reference wind turbine and a four-beam lidar system. Using lidar-assisted control reduces the variations in rotor speed, pitch rate, tower base fore–aft bending moment, and electrical power significantly.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Benjamin Anderson and Edward Baring-Gould
Wind Energ. Sci., 7, 1753–1769, https://doi.org/10.5194/wes-7-1753-2022, https://doi.org/10.5194/wes-7-1753-2022, 2022
Short summary
Short summary
Our article proposes an easy-to-integrate wind turbine control module which mitigates wind turbine fault conditions and sends predictive information to the grid operator, all while maximizing power production. This gives the grid operator more time to react to faults with its dispatch decisions, easing the transition between different generators. This study aims to illustrate the controller’s functionality under various types of faults and highlight potential wind turbine and grid benefits.
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625, https://doi.org/10.5194/wes-7-1605-2022, https://doi.org/10.5194/wes-7-1605-2022, 2022
Short summary
Short summary
This publication presents methods to improve the awareness and control of material fatigue for wind turbines. This is achieved by enhancing a sophisticated control algorithm which utilizes wind prediction information from a laser measurement device. The simulation results indicate that the novel algorithm significantly improves the economic performance of a wind turbine. This benefit is particularly high for situations when the prediction quality is low or the prediction time frame is short.
Cited articles
Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a, b
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Technical Report NREL/TP-5000-76773, https://www.nrel.gov/docs/fy20osti/76773.pdf (last access: 31 March 2022), 2020. a
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: UMaine VolturnUS-S Reference Platform, https://github.com/IEAWindTask37/IEA-15-240-RWT/tree/master/OpenFAST (last access: December 2023), 2023. a
Amaral, R., Laugesen, K., Masciola, M., von Terzi, D., Deglaire, P., and Viré, A.: A frequency-time domain method for annual energy production estimation in floating wind turbines, J. Phys. Conf. Ser., 2265, 042025, https://doi.org/10.1088/1742-6596/2265/4/042025, 2022. a, b, c
Arthur, D. and Vassilvitskii, S.: K-Means : The Advantages of Careful Seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, Society for Industrial and Applied Mathematics, New Orleans, Louisiana, USA, 7–9 January 2007, 1027–1035, https://dl.acm.org/doi/10.5555/1283383.1283494 (last access: 22 June 2024), 2007. a
Bachynski, E. E., Kvittem, M. I., Luan, C., and Moan, T.: Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects, J. Offshore Mech. Arct., 136, 041902, https://doi.org/10.1115/1.4028028, 2014. a
Branlard, E., Shields, M., Anderson, B., Damiani, R., Wendt, F., Jonkman, J., Musial, W., and Foley, B.: Superelement reduction of substructures for sequential load calculations in OpenFAST, J. Phys. Conf. Ser., 1452, 012033, https://doi.org/10.1088/1742-6596/1452/1/012033, 2020. a
Campos, A., Molins, C., Gironella, X., and Trubat, P.: Spar concrete monolithic design for offshore wind turbines, P. I. Civil Eng.-Mar. En., 169, 49–63, https://doi.org/10.1680/jmaen.2014.24, 2016. a, b
Camus, P., Mendez, F. J., Medina, R., and Cofiño, A. S.: Analysis of clustering and selection algorithms for the study of multivariate wave climate, Coast. Eng., 58, 453–462, https://doi.org/10.1016/j.coastaleng.2011.02.003, 2011. a
Cioni, S., Papi, F., Pagamonci, L., Bianchini, A., Ramos-García, N., Pirrung, G., Corniglion, R., Lovera, A., Galván, J., Boisard, R., Fontanella, A., Schito, P., Zasso, A., Belloli, M., Sanvito, A., Persico, G., Zhang, L., Li, Y., Zhou, Y., Mancini, S., Boorsma, K., Amaral, R., Viré, A., Schulz, C. W., Netzband, S., Soto-Valle, R., Marten, D., Martín-San-Román, R., Trubat, P., Molins, C., Bergua, R., Branlard, E., Jonkman, J., and Robertson, A.: On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: an insight based on experiments and multi-fidelity simulations from the OC6 project Phase III, Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, 2023. a
Clifton, A., Daniels, M. H., and Lehning, M.: Effect of winds in a mountain pass on turbine performance, Wind Energy, 17, 1543–1562, https://doi.org/10.1002/we.1650, 2014. a
Cottura, L., Caradonna, R., Novo, R., Ghigo, A., Bracco, G., and Mattiazzo, G.: Effect of pitching motion on production in a OFWT, Journal of Ocean Engineering and Marine Energy, 8, 319–330, https://doi.org/10.1007/s40722-022-00227-0, 2022. a, b, c
EMODnet: EMODnet Bathymetry World Base Layer, https://emodnet.ec.europa.eu/en/bathymetry (last access: 31 March 2022), 2023. a
Fleming, P. A., Peiffer, A., and Schlipf, D.: Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform, J. Offshore Mech. Arct., 141, 061901, https://doi.org/10.1115/1.4042938, 2019. a
Fontanella, A., Facchinetti, A., Di Carlo, S., and Belloli, M.: Wind tunnel investigation of the aerodynamic response of two 15 MW floating wind turbines, Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, 2022. a
Fontanella, A., Colpani, G., De Pascali, M., Muggiasca, S., and Belloli, M.: OpenFAST models and simulation outputs to assess the impact of waves and platform dynamics on floating wind turbine energy production, Zenodo [code and data set], https://doi.org/10.5281/zenodo.10513599, 2024. a
France, M.: Mètéo-France. Gulf de Lion buoy, https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=95&id_rubrique=32 (last access: 31 March 2022), 2022. a
Gaertner, E., Rinker, J. and. Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. rep., National Renewable Energy Laboratory, https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 31 March 2022), 2020. a
Hall, M. and Goupee, A.: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data, Ocean Eng., 104, 590–603, https://doi.org/10.1016/j.oceaneng.2015.05.035, 2015. a
Hasselmann, K. F., Barnett, T. P., Bouws, E., Carlson, H. C., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P. M., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), https://repository.tudelft.nl/islandora/object/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc?collection=research (last access: 31 October 2023), 1973. a
International Electrotechnical Commission: Wind energy generation systems – Part 3-1: Design requirements for fixed offshore wind turbines, IEC 61400-3-1:2019, Tech. Rep. IEC 61400-12-1:2022, International Electrotechnical Commission, https://webstore.iec.ch/publication/29360 (last access: 31 March 2022), 2019. a
International Electrotechnical Commission: Wind energy generation systems – Part 12-1: Power performance measurements of electricity producing wind turbines, IEC 61400-12-1:2022, Tech. Rep. IEC 61400-12-1:2022, International Electrotechnical Commission, https://webstore.iec.ch/publication/68499#additionalinfo (last access: 31 March 2022), 2022. a
Jonkman, B., Mudafort, R. M., Platt, A., Branlard, E., Sprague, M., Jonkman, J., Ross, H., Hall, M., Vijayakumar, G., Buhl, M., Bortolotti, P., Ananthan, S., Schmidt, M., Rood, J., Damiani, R., Mendoza, N., Shaler, K., Housner, S., Bendl, K., Carmo, L., Quon, E., Phillips, M. R., Kusuno, N., and Salcedo, A. G.: OpenFAST/openfast: v3.4.1, https://doi.org/10.5281/zenodo.7632926, 2023. a
Jonkman, B. J.: Turbsim User's Guide: Version 1.50, https://doi.org/10.2172/965520, 2009a. a
Jonkman, J.: Definition of the Floating System for Phase IV of OC3, NREL/TP-500-47535, https://www.nrel.gov/docs/fy10osti/47535.pdf (last access: 31 March 2022), 2009b. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5 MW reference wind turbine for offshore system development, NREL/TP-500-38060, https://www.nrel.gov/docs/fy09osti/38060.pdf (last access: 31 March 2022), 2009. a
Krieger, A., Ramachandran, G. K. V., Vita, L., Alonso, P. G., Almeria, G. G., Berque, J., and Aguirre, G.: D7.2 Design Basis, LIFES50+ Deliverable, https://lifes50plus.eu/wp-content/uploads/2015/11/D72_Design_Basis_Retyped-v1.1.pdf (last access: 31 March 2022), 2015. a
Mahfouz, M. Y., Molins, C., Trubat, P., Hernández, S., Vigara, F., Pegalajar-Jurado, A., Bredmose, H., and Salari, M.: Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves, Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021, 2021. a, b, c, d
Martini, M., Guanche, R., Armesto, J. A., Losada, I. J., and Vidal, C.: Met-ocean conditions influence on floating offshore wind farms power production, Wind Energy, 19, 399–420, https://doi.org/10.1002/we.1840, 2016. a
Meteostat: Marseille – Marignane weather station, https://meteostat.net/en/station/07650?t=2023-06-12/2023-06-19 (last access: 31 March 2022), 2022. a
Molins, C., Trubat, P., and Mahfouz, M. Y.: UPC – WINDCRETE OpenFAST model 15 MW FOWT – Grand Canary Island, https://doi.org/10.5281/zenodo.4322446, 2020. a
NREL: FLORIS, https://github.com/NREL/floris, last access: 21 September 2023a. a
NREL: ROSCO, Version 2.8.0, https://github.com/NREL/ROSCO (last access: 30 September 2023), 2023b. a
Patryniak, K., Collu, M., and Coraddu, A.: Rigid body dynamic response of a floating offshore wind turbine to waves: Identification of the instantaneous centre of rotation through analytical and numerical analyses, Renew. Energ., 218, 119378, https://doi.org/10.1016/j.renene.2023.119378, 2023. a
Renan dos Santos, C., Abdelmoteleb, S.-E., Mendoza, A. S. E., and Bachynski-Polić, E. E.: Control Considerations for Very Large Floating Wind Turbines, IFAC PapersOnLine, 55, 166–171, https://doi.org/10.1016/j.ifacol.2022.10.426, 2022. a
Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., and Luan, C.: Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601, https://www.nrel.gov/docs/fy14osti/60601.pdf (last access: 31 March 2022), 2014. a
Schelbergen, M., Kalverla, P. C., Schmehl, R., and Watson, S. J.: Clustering wind profile shapes to estimate airborne wind energy production, Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, 2020. a
St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Wind turbine power production and annual energy production depend on atmospheric stability and turbulence, Wind Energ. Sci., 1, 221–236, https://doi.org/10.5194/wes-1-221-2016, 2016. a, b, c
van der Veen, G. J., Couchman, I. J., and Bowyer, R. O.: Control of floating wind turbines, in: 2012 American Control Conference (ACC), Montréal, Canada, 27–29 June 2012, 3148–3153, https://doi.org/10.1109/ACC.2012.6315120, 2012. a, b
Vanelli, T., Rinker, J., and Zalkind, D. S.: Aeroservoelastic stability of a floating wind turbine, J. Phys. Conf. Ser., 2265, 042001, https://doi.org/10.1088/1742-6596/2265/4/042001, 2022 a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a
Wiley, W., Jonkman, J., Robertson, A., and Shaler, K.: Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads, Wind Energ. Sci., 8, 1575–1595, https://doi.org/10.5194/wes-8-1575-2023, 2023. a
Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E., and Gilman, P.: Expert elicitation survey predicts 37 % to 49 % declines in wind energy costs by 2050, Nature Energy, 6, 555–565, https://doi.org/10.1038/s41560-021-00810-z, 2021. a
Short summary
Waves can boost a floating wind turbine's power output by moving its rotor against the wind. Studying this, we used four models to explore the impact of waves and platform dynamics on turbines in the Mediterranean. We found that wind turbulence, not waves, primarily affects power fluctuations. In real conditions, floating wind turbines produce less energy compared to fixed-bottom ones, mainly due to platform tilt.
Waves can boost a floating wind turbine's power output by moving its rotor against the wind....
Altmetrics
Final-revised paper
Preprint