Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2113-2024
https://doi.org/10.5194/wes-9-2113-2024
Research article
 | 
07 Nov 2024
Research article |  | 07 Nov 2024

Evaluating the potential of a wake steering co-design for wind farm layout optimization through a tailored genetic algorithm

Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden

Related authors

A dynamic open-source model to investigate wake dynamics in response to wind farm flow control strategies
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025,https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Control design for floating wind turbines
Amr Hegazy, Peter Naaijen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-68,https://doi.org/10.5194/wes-2025-68, 2025
Preprint under review for WES
Short summary
Synchronized Helix Wake Mixing Control
Aemilius Adrianus Wilhelmus van Vondelen, Marion Coquelet, Sachin Tejwant Navalkar, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-51,https://doi.org/10.5194/wes-2025-51, 2025
Revised manuscript accepted for WES
Short summary
Identification of operational deflection shapes of a wind turbine gearbox using fiber-optic strain sensors on a serial production end-of-line test bench
Unai Gutierrez Santiago, Aemilius A. W. van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 207–225, https://doi.org/10.5194/wes-10-207-2025,https://doi.org/10.5194/wes-10-207-2025, 2025
Short summary
The helix wake and its properties: reduced order modeling through dynamic mode decomposition
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149,https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary

Cited articles

Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Cassamo, N.: Active Wake Control Validation Methodology, Tech. rep., TNO, https://resolver.tno.nl/uuid:8f05d03f-1d1b-44e1-885b-12e638914ec2 (last access: 4 November 2024), 2022. a
Chen, K., Lin, J., Qiu, Y., Liu, F., and Song, Y.: Joint optimization of wind farm layout considering optimal control, Renew. Energ., 182, 787–796, https://doi.org/10.1016/J.RENENE.2021.10.032, 2022. a
Crespo, A. and Hernandez, J.: Turbulence characteristics in wind-turbine wakes, J. Wind Eng. Ind. Aerod., 61, 71–85, https://doi.org/10.1016/0167-6105(95)00033-X, 1996. a
Crosswind: Crosswind HKN, https://www.crosswindhkn.nl/ (last access: 4 November 2024), 2024. a
Download
Short summary
Wake steering can be integrated into wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrine farm, and a multi-objective implementation is used to limit loss in the case that wake steering is not used during farm operation.
Share
Altmetrics
Final-revised paper
Preprint