Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-49-2024
https://doi.org/10.5194/wes-9-49-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Nonlinear vibration characteristics of virtual mass systems for wind turbine blade fatigue testing

Aiguo Zhou, Jinlei Shi, Tao Dong, Yi Ma, and Zhenhui Weng

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
A novel techno-economical layout optimization tool for floating wind farm design
Amalia Ida Hietanen, Thor Heine Snedker, Katherine Dykes, and Ilmas Bayati
Wind Energ. Sci., 9, 417–438, https://doi.org/10.5194/wes-9-417-2024,https://doi.org/10.5194/wes-9-417-2024, 2024
Short summary
Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024,https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Speeding up large-wind-farm layout optimization using gradients, parallelization, and a heuristic algorithm for the initial layout
Rafael Valotta Rodrigues, Mads Mølgaard Pedersen, Jens Peter Schøler, Julian Quick, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024,https://doi.org/10.5194/wes-9-321-2024, 2024
Short summary
Extreme wind turbine response extrapolation with the Gaussian mixture model
Xiaodong Zhang and Nikolay Dimitrov
Wind Energ. Sci., 8, 1613–1623, https://doi.org/10.5194/wes-8-1613-2023,https://doi.org/10.5194/wes-8-1613-2023, 2023
Short summary
The effect of site-specific wind conditions and individual pitch control on wear of blade bearings
Arne Bartschat, Karsten Behnke, and Matthias Stammler
Wind Energ. Sci., 8, 1495–1510, https://doi.org/10.5194/wes-8-1495-2023,https://doi.org/10.5194/wes-8-1495-2023, 2023
Short summary

Cited articles

Castro, O., Belloni, F., and Stolpe, M.: Optimized method for multi-axial fatigue testing of wind turbine blades, Compos. Struct., 257, 113358, https://doi.org/10.1016/j.compstruct.2020.113358, 2021. 
DNV GL AS: DNVGL-ST-0376 – Rotor blades for wind turbines, https://rules.dnvgl.com/docs/pdf/DNVGL/ ST/2015-12/DNVGL-ST-0376.pdf (last access: 7 June 2019), 2015. 
Falko, B.: Biaxial Dynamic Fatigue Tests of Wind Turbine Blades, PhD thesis, Leibniz University Hannover, Hannover, Germany, https://publica.fraunhofer.de/handle/publica/283519 (last access: 28 October 2023), 2020. 
Greaves, P. R., Dominy, R. G., Ingram, G. L., Long, H., and Court, R.: Evaluation of dual-axis fatigue testing of large wind turbine blades, P. I. Mech. Eng. C-J. Mec., 226, 1693–1704, https://doi.org/10.1177/0954406211428013, 2012. 
Hughes, S., Musial, W. D., and Stensland, T.: Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades, Tech. rep., National Renewable Energy Lab., Golden, CO, USA, https://www.osti.gov/servlets/purl/12200 (last access: 28 October 2023), 1999. 
Download
Short summary
This paper explores the nonlinear influence of the virtual mass mechanism on the test system in blade biaxial tests. The blade theory and simulation model are established to reveal the nonlinear amplitude–frequency characteristics of the blade-virtual-mass system. Increasing the amplitude of the blade or decreasing the seesaw length will lower the resonance frequency and load of the system. The virtual mass also affects the blade biaxial trajectory.
Altmetrics
Final-revised paper
Preprint