Articles | Volume 9, issue 3
https://doi.org/10.5194/wes-9-519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Floating wind turbine motion signature in the far-wake spectral content – a wind tunnel experiment
Benyamin Schliffke
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), 49000 Angers, France
Boris Conan
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Sandrine Aubrun
CORRESPONDING AUTHOR
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Related authors
No articles found.
Carlo L. Bottasso, Sandrine Aubrun, Nicolaos A. Cutululis, Julia Gottschall, Athanasios Kolios, Jakob Mann, and Paul Veers
Wind Energ. Sci., 11, 347–348, https://doi.org/10.5194/wes-11-347-2026, https://doi.org/10.5194/wes-11-347-2026, 2026
Short summary
Short summary
This editorial celebrates the 10th anniversary of Wind Energy Science, reflecting on a decade of rapid scientific progress and the journal’s role in advancing fundamental, interdisciplinary research. It highlights key developments in wind energy, the importance of open science and academia–industry collaboration, and emerging challenges such as data sharing and artificial intelligence. Above all, it honors the research community that has shaped the journal and looks ahead to the next decade.
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attié, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci., 10, 1929–1942, https://doi.org/10.5194/wes-10-1929-2025, https://doi.org/10.5194/wes-10-1929-2025, 2025
Short summary
Short summary
A 3-year meteorological dataset from an operational wind farm of six 2 MW (megawatt) turbines has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Antonin Hubert, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 10, 1351–1368, https://doi.org/10.5194/wes-10-1351-2025, https://doi.org/10.5194/wes-10-1351-2025, 2025
Short summary
Short summary
The paper aims to study the far wake of a wind turbine under realistic inflow conditions subjected to harmonic floating motions. The present work shows that phase averaging enables the observation of the coherent spatiotemporal wake behaviour in response to the harmonic motions, contrary to previous studies with time averaging, and that the resulting variations in the chosen metrics exhibit an intensity higher than those expected when using basic quasi-steady-state approaches.
Dimas Alejandro Barile, Roberto Sosa, Sandrine Aubrun, and Alejandro Daniel Otero
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-2, https://doi.org/10.5194/wes-2025-2, 2025
Manuscript not accepted for further review
Short summary
Short summary
This work sets out a novel methodology for the CFD simulation of an ABL wind tunnel flow. Initially, the scheme is well validated against experimental measurements, and then it is applied to the study of a floating offshore wind turbine model under surge motion with varying turbulence intensities and motion frequencies. New insights are gained related to wake recovery of a wind turbine under surge motion, as certain frequency cases exhibit a distinctive behaviour regarding coherence structures.
Boris Conan and Aleksandra Visich
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-141, https://doi.org/10.5194/wes-2023-141, 2023
Revised manuscript not accepted
Short summary
Short summary
The paper describes an original field experiment using a scanning LiDAR set up to measure the wind profile above the sea surface up to an altitude of 500 m. Reaching this height with a good vertical resolution is key for the wind energy sector, especially for wind turbine design, load and fatigue predictions. Observations at the site include low-level jets and extreme wind shear that are observed 15 % and 30 % of the time, respectively.
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021, https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary
Short summary
This paper investigates the effect of misaligning a wind turbine on its wake deviation response and on the global load variation of a downstream wind turbine during a positive and negative yaw maneuver, representing a misalignment–realignment scenario. Yaw maneuvers could be used to voluntarily misalign wind turbines when wake steering control is targeted. The aim of this wind farm control strategy is to optimize the overall production of the wind farm and its lifetime.
Cited articles
Aubrun, S., Loyer, S., Hancock, P., and Hayden, P.: Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model, J. Wind Eng. Indust. Aerodynam., 120, 1–8, https://doi.org/10.1016/j.jweia.2013.06.007, 2013. a, b
Aubrun, S., Bastankhah, M., Cal, R. B., Conan, B., Hearst, R. J., Hoek, D., Hölling, M., Huang, M., Hur, C., Karlsen, B., Neunaber, I., Obligado, M., Peinke, J., Percin, M., Saetran, L., Schito, P., Schliffke, B., Sims-Williams, D., Uzol, O., Vinnes, M. K., and Zasso, A.: Round-robin tests of porous disc models, J. Phys.: Conf. Ser., 1256, 012004, https://doi.org/10.1088/1742-6596/1256/1/012004, 2019. a
Benedict, L. and Gould, R.: Towards better uncertainty estimates for turbulence statistics, Exp. Fluids, 22, 129–136, 1996. a
BW Ideol: Floating wind turbine motion and loads validation (power production), Report No. G03-CN-AER-2567-00 REV C4_114614482_114641386, 2019a. a
BW Ideol: Floating wind turbine motion and loads validation (idling cases), Report No. G03-CN-AER-2569-00 REV C2_114618788_114642566, 2019b. a
BW Ideol: Floatgen demonstrator, https://www.bw-ideol.com/en/floatgen-demonstrator (last access: 1 March 2024), 2024. a
Camp, E. H. and Cal, R. B.: Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: Energy budget and octant analysis, Phys. Rev. Fluids, 1, 044404, https://doi.org/10.1103/PhysRevFluids.1.044404, 2016. a
Choisnet, T., Rogier, E., Percher, Y., Courbois, A., Le Crom, I., and Mariani, R.: Performance and mooring qualification in Floatgen: The first French offshore wind turbine project, 16èmes Journées de l'hydrodynamique, 27–29 novembre 2018, Marseille, France, http://website.ec-nantes.fr/actesjh/images/16JH/Annexe/16jh-s04.htm (last access: 1 March 2024), 2018. a
Counihan, J.: Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972, Atmos. Environ., 9, 871–905, 1975. a
Feist, C., Sotiropoulos, F., and Guala, M.: A quasi-coupled wind wave experimental framework for testing offshore wind turbine floating systems, Theor. Appl. Mech. Lett., 11, 100294, https://doi.org/10.1016/j.taml.2021.100294, 2021. a, b, c
Fontanella, A., Bayati, I., Mikkelsen, R., Belloli, M., and Zasso, A.: UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion, Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, 2021. a, b
Fontanella, A., Facchinetti, A., Di Carlo, S., and Belloli, M.: Wind tunnel investigation of the aerodynamic response of two 15 MW floating wind turbines, Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, 2022. a, b
Garcia, L. P., Conan, B., Aubrun, S., Perret, L., Piquet, T., Raibaudo, C., and Schliffke, B.: Experimental Analysis of the Wake Meandering of a Floating Wind Turbine under Imposed Surge Motion, J. Phys.: Conf. Ser., 2265, 042003, https://doi.org/10.1088/1742-6596/2265/4/042003, 2022. a
Kaimal, J. C., Wyngaard, J., Izumi, Y., and Coté, O.: Spectral characteristics of surface-layer turbulence, Q. J. Roy. Meteorol. Soc., 98, 563–589, 1972. a
Kikuchi, Y. and Ishihara, T.: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms, J. Phy.: Conf. Ser., 1356, 012033, https://doi.org/10.1088/1742-6596/1356/1/012033, 2019. a
King, L. V.: On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry, Philos. T. Roy. Soc. Lond. A, 214, 373–432, 1914. a
Kleine, V. G., Franceschini, L., Carmo, B. S., Hanifi, A., and Henningson, D. S.: The stability of wakes of floating wind turbines, Phys. Fluids, 34, 074106, https://doi.org/10.1063/5.0092267, 2022. a
Meng, H., Su, H., Qu, T., and Lei, L.: Wind tunnel study on the wake characteristics of a wind turbine model subjected to surge and sway motions, J. Renew. Sustain. Energ., 14, 013307, https://doi.org/10.1063/5.0079843, 2022. a
Neunaber, I., Hölling, M., Whale, J., and Peinke, J.: Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: A wind tunnel study, Renew. Energy, 179, 1650–1662, 2021. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59, https://doi.org/10.1007/s10546-019-00473-0, 2019. a
Raibaudo, C., Piquet, T., Schliffke, B., Conan, B., and Perret, L.: POD analysis of the wake dynamics of an offshore floating wind turbine model, J. Phys.: Conf. Ser., 2265, 022085, https://doi.org/10.1088/1742-6596/2265/2/022085, 2022. a
Thilleul, O. and Perignon, Y.: SEM-REV Metocean design basis, Zenodo, https://doi.org/10.5281/zenodo.6325718, 2022. a
VDI: VDI guideline 3783/12: Environmental meteorology – Physical modelling of flow and dispersion processes in the atmospheric boundary layer – Application of wind tunnels, Beuth Verlag, Berlin, https://www.vdi.de/richtlinien/details/vdi-3783-blatt-12-umweltmeteorologie-physikalische (last access: 1 March 2024), 2000. a, b, c, d, e, f, g
Zhang, W., Markfort, C. D., and Porté-Agel, F.: Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer, Exp. Fluids, 52, 1219–1235, 2012. a
Zhang, W., Markfort, C. D., and Porté-Agel, F.: Wind-turbine wakes in a convective boundary layer: A wind-tunnel study, Bound.-Lay. Meteorol., 146, 161–179, 2013. a
Short summary
This paper studies the consequences of floater motions for the wake properties of a floating wind turbine. Since wake interactions are responsible for power production loss in wind farms, it is important that we know whether the tools that are used to predict this production loss need to be upgraded to take into account these aspects. Our wind tunnel study shows that the signature of harmonic floating motions can be observed in the far wake of a wind turbine, when motions have strong amplitudes.
This paper studies the consequences of floater motions for the wake properties of a floating...
Altmetrics
Final-revised paper
Preprint