Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-65-2024
https://doi.org/10.5194/wes-9-65-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Towards real-time optimal control of wind farms using large-eddy simulations

Nick Janssens and Johan Meyers

Related authors

Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024,https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Mesoscale weather systems and associated potential wind power variations in a mid-latitude sea strait (Kattegat)
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-116,https://doi.org/10.5194/wes-2023-116, 2023
Revised manuscript under review for WES
Short summary
Comparison of large eddy simulations against measurements from the Lillgrund offshore wind farm
Ishaan Sood, Elliot Simon, Athanasios Vitsas, Bart Blockmans, Gunner C. Larsen, and Johan Meyers
Wind Energ. Sci., 7, 2469–2489, https://doi.org/10.5194/wes-7-2469-2022,https://doi.org/10.5194/wes-7-2469-2022, 2022
Short summary
Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022,https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Wind farm flow control: prospects and challenges
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022,https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
Dynamic wind farm flow control using free-vortex wake models
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024,https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
The value of wake steering wind farm flow control in US energy markets
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024,https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Sensitivity analysis of wake steering optimisation for wind farm power maximisation
Filippo Gori, Sylvain Laizet, and Andrew Wynn
Wind Energ. Sci., 8, 1425–1451, https://doi.org/10.5194/wes-8-1425-2023,https://doi.org/10.5194/wes-8-1425-2023, 2023
Short summary
The dynamic coupling between the pulse wake mixing strategy and floating wind turbines
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023,https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023,https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary

Cited articles

Andersen, S., Madariaga, A., Merz, K., Meyers, J., Munters, W., and Rodriguez, C.: TotalControl: Advanced integrated supervisory and wind turbine control for optimal operation of large Wind Power Plants – Reference Wind Power Plant D1.03, https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables (last access: 20 January 2023), 2018. a, b, c, d, e
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW reference wind turbine, in: Danish Wind Power Research 2013 – Trinity, 27–28 May 2013, Fredericia, Denmark, 2013. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Bauweraerts, P. and Meyers, J.: On the Feasibility of Using Large-Eddy Simulations for Real-Time Turbulent-Flow Forecasting in the Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 171, 213–235, https://doi.org/10.1007/s10546-019-00428-5, 2019. a, b, c, d, e, f
Bauweraerts, P. and Meyers, J.: Reconstruction of turbulent flow fields from lidar measurements using large-eddy simulation, J. Fluid Mech., 906, A17, https://doi.org/10.1017/jfm.2020.805, 2021. a
Download
Short summary
Proper wind farm control may vastly contribute to Europe's plan to go carbon neutral. However, current strategies don't account for turbine–wake interactions affecting power extraction. High-fidelity models (e.g., LES) are needed to accurately model this but are considered too slow in practice. By coarsening the resolution, we were able to design an efficient LES-based controller with real-time potential. This may allow us to bridge the gap towards practical wind farm control in the near future.
Altmetrics
Final-revised paper
Preprint