Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-65-2024
https://doi.org/10.5194/wes-9-65-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Towards real-time optimal control of wind farms using large-eddy simulations

Nick Janssens and Johan Meyers

Related authors

An inter-comparison study on the impact of atmospheric boundary layer height on gigawatt-scale wind plant performance
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88,https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
A large-eddy simulation analysis of collective wind farm axial-induction set points in the presence of blockage
Théo Delvaux and Johan Meyers
Wind Energ. Sci., 10, 613–630, https://doi.org/10.5194/wes-10-613-2025,https://doi.org/10.5194/wes-10-613-2025, 2025
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci., 10, 435–450, https://doi.org/10.5194/wes-10-435-2025,https://doi.org/10.5194/wes-10-435-2025, 2025
Short summary
Effect of blockage on wind turbine power and wake development
Olivier Ndindayino, Augustin Puel, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-6,https://doi.org/10.5194/wes-2025-6, 2025
Revised manuscript under review for WES
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Comparison of wind farm control strategies under realistic offshore wind conditions: turbine quantities of interest
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025,https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant
Peter Bachant, Peter Ireland, Brian Burrows, Chi Qiao, James Duncan, Danian Zheng, and Mohit Dua
Wind Energ. Sci., 9, 2235–2259, https://doi.org/10.5194/wes-9-2235-2024,https://doi.org/10.5194/wes-9-2235-2024, 2024
Short summary
A dynamic open-source model to investigate wake dynamics in response to wind farm flow control strategies
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-150,https://doi.org/10.5194/wes-2024-150, 2024
Revised manuscript accepted for WES
Short summary
Evaluating the potential of a wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024,https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary

Cited articles

Andersen, S., Madariaga, A., Merz, K., Meyers, J., Munters, W., and Rodriguez, C.: TotalControl: Advanced integrated supervisory and wind turbine control for optimal operation of large Wind Power Plants – Reference Wind Power Plant D1.03, https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables (last access: 20 January 2023), 2018. a, b, c, d, e
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW reference wind turbine, in: Danish Wind Power Research 2013 – Trinity, 27–28 May 2013, Fredericia, Denmark, 2013. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Bauweraerts, P. and Meyers, J.: On the Feasibility of Using Large-Eddy Simulations for Real-Time Turbulent-Flow Forecasting in the Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 171, 213–235, https://doi.org/10.1007/s10546-019-00428-5, 2019. a, b, c, d, e, f
Bauweraerts, P. and Meyers, J.: Reconstruction of turbulent flow fields from lidar measurements using large-eddy simulation, J. Fluid Mech., 906, A17, https://doi.org/10.1017/jfm.2020.805, 2021. a
Download
Short summary
Proper wind farm control may vastly contribute to Europe's plan to go carbon neutral. However, current strategies don't account for turbine–wake interactions affecting power extraction. High-fidelity models (e.g., LES) are needed to accurately model this but are considered too slow in practice. By coarsening the resolution, we were able to design an efficient LES-based controller with real-time potential. This may allow us to bridge the gap towards practical wind farm control in the near future.
Share
Altmetrics
Final-revised paper
Preprint