Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-869-2024
https://doi.org/10.5194/wes-9-869-2024
Research article
 | 
12 Apr 2024
Research article |  | 12 Apr 2024

Data-driven optimisation of wind farm layout and wake steering with large-eddy simulations

Nikolaos Bempedelis, Filippo Gori, Andrew Wynn, Sylvain Laizet, and Luca Magri

Related authors

Sensitivity analysis of wake steering optimisation for wind farm power maximisation
Filippo Gori, Sylvain Laizet, and Andrew Wynn
Wind Energ. Sci., 8, 1425–1451, https://doi.org/10.5194/wes-8-1425-2023,https://doi.org/10.5194/wes-8-1425-2023, 2023
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024,https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024,https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary
An actuator sector model for wind power applications: a parametric study
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024,https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary

Cited articles

Adaramola, M. and Krogstad, P.-Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, 2011. a
Allen, J., King, R., and Barter, G.: Wind farm simulation and layout optimization in complex terrain, J. Phys. Conf. Ser., 1452, 012066, https://doi.org/10.1088/1742-6596/1452/1/012066, 2020. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019. a
Antonini, E. G., Romero, D. A., and Amon, C. H.: Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods, Appl. Energ., 261, 114426, https://doi.org/10.1016/j.apenergy.2019.114426, 2020. a
Antonini, E. G. A., Romero, D. A., and Amon, C. H.: Continuous adjoint formulation for wind farm layout optimization: A 2D implementation, Appl. Energ., 228, 2333–2345, 2018. a, b, c
Download
Short summary
This paper proposes a computational method to maximise the power production of wind farms through two strategies: layout optimisation and yaw angle optimisation. The proposed method relies on high-fidelity computational modelling of wind farm flows and is shown to be able to effectively maximise wind farm power production. Performance improvements relative to conventional optimisation strategies based on low-fidelity models can be attained, particularly in scenarios of increased flow complexity.
Altmetrics
Final-revised paper
Preprint