Articles | Volume 10, issue 8
https://doi.org/10.5194/wes-10-1681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/wes-10-1681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Operational wind plants increase planetary boundary layer height: an observational study
National Renewable Energy Laboratory, Golden, Colorado, USA
Matteo Puccioni
Lawrence Livermore National Laboratory, Livermore, California, USA
Arianna Jordan
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Emina Maric
National Renewable Energy Laboratory, Golden, Colorado, USA
Nicola Bodini
National Renewable Energy Laboratory, Golden, Colorado, USA
Nicholas Hamilton
National Renewable Energy Laboratory, Golden, Colorado, USA
Stefano Letizia
National Renewable Energy Laboratory, Golden, Colorado, USA
Petra M. Klein
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Elizabeth N. Smith
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma, USA
Sonia Wharton
Lawrence Livermore National Laboratory, Livermore, California, USA
Jonathan Gero
Space Science Engineering Center, University of Wisconsin, Madison, Wisconsin, USA
Jamey D. Jacob
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
Raghavendra Krishnamurthy
Pacific Northwest National Laboratory, Richland, Washington, USA
Rob K. Newsom
Pacific Northwest National Laboratory, Richland, Washington, USA
Mikhail Pekour
Pacific Northwest National Laboratory, Richland, Washington, USA
William Radünz
Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, Maryland, USA
Patrick Moriarty
National Renewable Energy Laboratory, Golden, Colorado, USA
Related authors
Adam S. Wise, Robert S. Arthur, Aliza Abraham, Sonia Wharton, Raghavendra Krishnamurthy, Rob Newsom, Brian Hirth, John Schroeder, Patrick Moriarty, and Fotini K. Chow
Wind Energ. Sci., 10, 1007–1032, https://doi.org/10.5194/wes-10-1007-2025, https://doi.org/10.5194/wes-10-1007-2025, 2025
Short summary
Short summary
Wind farms can be subject to rapidly changing weather events. In the United States Great Plains, some of these weather events can result in waves in the atmosphere that ultimately affect how much power a wind farm can produce. We modeled a specific event of waves observed in Oklahoma. We determined how to accurately model the event and analyzed how it affected a wind farm’s power production, finding that the waves both decreased power and made it more variable.
William Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-166, https://doi.org/10.5194/wes-2024-166, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study investigates how simple terrain can cause significant variations in wind speed, especially during specific atmospheric conditions like low-level jets. By combining simulations and observations from a real wind farm, we found that downstream turbines generate more power than upstream ones, despite wake effects only impacting the upstream turbines. We highlight the crucial role of the strong vertical wind speed gradient in low-level jets in driving this effect.
Yelena L. Pichugina, Alan W. Brewer, Sunil Baidar, Robert Banta, Edward Strobach, Brandi McCarty, Brian Carroll, Nicola Bodini, Stefano Letizia, Richard Marchbanks, Michael Zucker, Maxwell Holloway, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-79, https://doi.org/10.5194/wes-2025-79, 2025
Preprint under review for WES
Short summary
Short summary
The truck-based Doppler lidar system was used during the American Wake Experiment (AWAKEN) to obtain the high-frequency, simultaneous measurements of the horizontal wind speed, direction, and vertical-velocity from a moving platform. The paper presents the unique capability of the novel lidar system to characterize the temporal, vertical, and spatial variability of winds at various distances from operating turbines and obtain quantitative estimates of wind speed reduction in the waked flow.
Nicholas Hamilton and Shreyas Bidadi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-137, https://doi.org/10.5194/wes-2025-137, 2025
Preprint under review for WES
Short summary
Short summary
This study explores improvements to an atmospheric measurement method called acoustic tomography, which uses sound travel times to estimate wind and temperature. We compare several ways of estimating how air conditions vary and show that models based on realistic wind turbine simulations yield more accurate results than traditional simplified methods. These findings support better observations of complex air flows around wind turbines, helping advance renewable energy research.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, https://doi.org/10.5194/wes-10-1551-2025, https://doi.org/10.5194/wes-10-1551-2025, 2025
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and interannual trends in the wind resource in coastal locations to support customers interested in small and midsize wind energy.
Anna Voss, Konrad B. Bärfuss, Beatriz Cañadillas, Maik Angermann, Mark Bitter, Matthias Cremer, Thomas Feuerle, Jonas Spoor, Julie K. Lundquist, Patrick Moriarty, and Astrid Lampert
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-113, https://doi.org/10.5194/wes-2025-113, 2025
Preprint under review for WES
Short summary
Short summary
This study analyses onshore wind farm wakes in a semi-complex terrain with data conducted with the research aircraft of TU Braunschweig during the AWAKEN project. Vertical profiles of temperature, humidity and wind give insights into the stratification of the atmospheric boundary layer, while horizontal profiles downwind of wind farms reveal an amplification of the reduction in wind speed in a semi-complex terrain in particular in a distance of 10 km.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025, https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Short summary
Offshore wind farms along the US East Coast can have limited effects on local weather. To study these effects, we include wind farms near Massachusetts and Rhode Island, and we test different amounts of turbulence in our model. We analyze changes in wind, temperature, and turbulence. Simulated effects on surface temperature and turbulence change depending on how much turbulence is added to the model. The extent of the wind farm wake depends on how deep the atmospheric boundary layer is.
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025, https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Short summary
This paper evaluates a new model configuration for wind energy forecasting in complex terrain. We compare model results to observations in the Altamont Pass (California, USA), where wind channeling through a mountain gap leads to increased energy production. We demonstrate that the new model configuration performs similarly to a more established approach, with some evidence of improved wind speed predictions, and provide guidance for future model testing.
Jungmin Lee, Virendra P. Ghate, Arka Mitra, Lee M. Miller, Raghavendra Krishnamurthy, and Ulrike Egerer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-108, https://doi.org/10.5194/wes-2025-108, 2025
Preprint under review for WES
Short summary
Short summary
This study compares weather model predictions to real-world measurements of wind and clouds off California's coast, where offshore wind farms are planned. It finds the model often underestimates wind speeds in cloudy conditions and shows larger errors in clear skies. These results highlight when and where the model is most accurate, helping improve wind forecasts and support better planning for offshore wind energy projects.
Macy Frost Chang, Raghavendra Krishnamurthy, and Fotini Katopodes Chow
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-85, https://doi.org/10.5194/wes-2025-85, 2025
Preprint under review for WES
Short summary
Short summary
The development of offshore wind energy sites hinges on accurate prediction of hub-height wind speeds. This paper compares three machine learning (ML) algorithms to a standard log-law wind extrapolation at two offshore buoy sites. The ML methods demonstrate new capabilities for providing accurate and adaptable predictions of offshore wind characteristics in comparison to conventional approaches. These ML techniques can help inform the development of offshore wind energy projects.
Adam S. Wise, Robert S. Arthur, Aliza Abraham, Sonia Wharton, Raghavendra Krishnamurthy, Rob Newsom, Brian Hirth, John Schroeder, Patrick Moriarty, and Fotini K. Chow
Wind Energ. Sci., 10, 1007–1032, https://doi.org/10.5194/wes-10-1007-2025, https://doi.org/10.5194/wes-10-1007-2025, 2025
Short summary
Short summary
Wind farms can be subject to rapidly changing weather events. In the United States Great Plains, some of these weather events can result in waves in the atmosphere that ultimately affect how much power a wind farm can produce. We modeled a specific event of waves observed in Oklahoma. We determined how to accurately model the event and analyzed how it affected a wind farm’s power production, finding that the waves both decreased power and made it more variable.
Ryan C. Sullivan, David P. Billesbach, Sebastien Biraud, Stephen Chan, Richard Hart, Evan Keeler, Jenni Kyrouac, Sujan Pal, Mikhail Pekour, Sara L. Sullivan, Adam Theisen, Matt Tuftedal, and David R. Cook
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-168, https://doi.org/10.5194/essd-2025-168, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Turbulent fluxes quantify energy, water, or trace gases exchange into and out of the atmosphere. The US Department of Energy Atmospheric Radiation Measurement user facility has been making atmospheric measurements since the early 1990's, including of turbulent fluxes using two well-established methods: energy balance Bowen ratio and eddy covariance. This manuscript documents key aspects of these datasets, including their history, changes through time, and best use practices.
Arka Mitra, Virendra Ghate, and Raghavendra Krishnamurthy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-55, https://doi.org/10.5194/wes-2025-55, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study introduces a new metric to quantify the spatiotemporal variability of wind resources and a novel numerical technique to locate the optimal wind resource within a large wind farm. The new metric and the novel optimization technique are applied to assist in the pre-construction wind resource assessments of two Californian offshore wind energy areas. This optimization is stable for a diverse choice of wind turbines and is easily scalable and adaptable to any other offshore location.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Pietro Bortolotti, Lee Jay Fingersh, Nicholas Hamilton, Arlinda Huskey, Chris Ivanov, Mark Iverson, Jonathan Keller, Scott Lambert, Jason Roadman, Derek Slaughter, Syhoune Thao, and Consuelo Wells
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-8, https://doi.org/10.5194/wes-2025-8, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study compares a wind turbine with blades behind the tower (downwind) to the traditional upwind design. Testing a 1.5 MW turbine at NREL’s Flatirons Campus, we measured performance, loads, and noise. Numerical models matched well with observations. The downwind setup showed higher fatigue loads and sound variations but also an unexpected power improvement. Downwind rotors might be a valid alternative for future floating offshore wind applications.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Gopal R. Yalla, Kenneth Brown, Lawrence Cheung, Dan Houck, Nathaniel deVelder, and Nicholas Hamilton
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-14, https://doi.org/10.5194/wes-2025-14, 2025
Revised manuscript accepted for WES
Short summary
Short summary
When wind reaches the first set of turbines in a wind farm, energy is extracted, reducing the energy available for downstream turbines. This study examines emerging technologies aimed at re-energizing the wind between turbines in a wind farm to improve overall power production. Optimizing these technologies depends on understanding complex features of the atmosphere and the wakes behind turbines, which is accomplished using high fidelity computer simulations and data analysis techniques.
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025, https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
David Rosencrans, Julie K. Lundquist, Mike Optis, and Nicola Bodini
Wind Energ. Sci., 10, 59–81, https://doi.org/10.5194/wes-10-59-2025, https://doi.org/10.5194/wes-10-59-2025, 2025
Short summary
Short summary
The US offshore wind industry is growing rapidly. Expansion into cold climates will subject turbines and personnel to hazardous icing. We analyze the 21-year icing risk for US east coast wind areas based on numerical weather prediction simulations and further assess impacts from wind farm wakes over one winter season. Sea spray icing at 10 m can occur up to 67 h per month. However, turbine–atmosphere interactions reduce icing hours within wind plant areas.
William Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-166, https://doi.org/10.5194/wes-2024-166, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study investigates how simple terrain can cause significant variations in wind speed, especially during specific atmospheric conditions like low-level jets. By combining simulations and observations from a real wind farm, we found that downstream turbines generate more power than upstream ones, despite wake effects only impacting the upstream turbines. We highlight the crucial role of the strong vertical wind speed gradient in low-level jets in driving this effect.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024, https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
Short summary
Our study explores a comprehensive dataset from airborne field studies (2013–2018) conducted using the US Department of Energy's Gulfstream 1 (G-1). The 236 flights span diverse regions, including the Arctic, US Southern Great Plains, US West Coast, eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This dataset provides unique insights into atmospheric dynamics, aerosols, and clouds and makes data available in a more accessible format.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci., 9, 555–583, https://doi.org/10.5194/wes-9-555-2024, https://doi.org/10.5194/wes-9-555-2024, 2024
Short summary
Short summary
The US offshore wind industry is developing rapidly. Using yearlong simulations of wind plants in the US mid-Atlantic, we assess the impacts of wind turbine wakes. While wakes are the strongest and longest during summertime stably stratified conditions, when New England grid demand peaks, they are predictable and thus manageable. Over a year, wakes reduce power output by over 35 %. Wakes in a wind plant contribute the most to that reduction, while wakes between wind plants play a secondary role.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Nicola Bodini, Simon Castagneri, and Mike Optis
Wind Energ. Sci., 8, 607–620, https://doi.org/10.5194/wes-8-607-2023, https://doi.org/10.5194/wes-8-607-2023, 2023
Short summary
Short summary
The National Renewable Energy Laboratory (NREL) has published updated maps of the wind resource along all US coasts. Given the upcoming offshore wind development, it is essential to quantify the uncertainty that comes with the modeled wind resource data set. The paper proposes a novel approach to quantify this numerical uncertainty by leveraging available observations along the US East Coast.
Ryan Scott, Luis Martínez-Tossas, Juliaan Bossuyt, Nicholas Hamilton, and Raúl B. Cal
Wind Energ. Sci., 8, 449–463, https://doi.org/10.5194/wes-8-449-2023, https://doi.org/10.5194/wes-8-449-2023, 2023
Short summary
Short summary
In this work we examine the relationship between wind speed and turbulent stresses within a wind turbine wake. This relationship changes further from the turbine as the driving physical phenomena vary throughout the wake. We propose a model for this process and test the effectiveness of our model against existing formulations. Our approach increases the accuracy of wind speed predictions, which will lead to better estimates of wind plant performance and promote more efficient wind plant design.
Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich
Wind Energ. Sci., 8, 433–448, https://doi.org/10.5194/wes-8-433-2023, https://doi.org/10.5194/wes-8-433-2023, 2023
Short summary
Short summary
Turbulence intensity is critical for wind turbine design and operation as it affects wind power generation efficiency. Turbulence measurements in the marine environment are limited. We use a model to derive turbulence intensity and test how sea surface temperature data may impact the simulated turbulence intensity and atmospheric stability. The model slightly underestimates turbulence, and improved sea surface temperature data reduce the bias. Error with unrealistic mesoscale flow is identified.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022, https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary
Short summary
Numerical weather prediction models are used to predict how wind turbines will interact with the atmosphere. Here, we characterize the uncertainty associated with the choice of turbulence parameterization on modeled wakes. We find that simulated wind speed deficits in turbine wakes can be significantly sensitive to the choice of turbulence parameterization. As such, predictions of future generated power are also sensitive to turbulence parameterization choice.
Lindsay M. Sheridan, Raghu Krishnamurthy, Gabriel García Medina, Brian J. Gaudet, William I. Gustafson Jr., Alicia M. Mahon, William J. Shaw, Rob K. Newsom, Mikhail Pekour, and Zhaoqing Yang
Wind Energ. Sci., 7, 2059–2084, https://doi.org/10.5194/wes-7-2059-2022, https://doi.org/10.5194/wes-7-2059-2022, 2022
Short summary
Short summary
Using observations from lidar buoys, five reanalysis and analysis models that support the wind energy community are validated offshore and at rotor-level heights along the California Pacific coast. The models are found to underestimate the observed wind resource. Occasions of large model error occur in conjunction with stable atmospheric conditions, wind speeds associated with peak turbine power production, and mischaracterization of the diurnal wind speed cycle in summer months.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Emmanouil M. Nanos, Carlo L. Bottasso, Filippo Campagnolo, Franz Mühle, Stefano Letizia, G. Valerio Iungo, and Mario A. Rotea
Wind Energ. Sci., 7, 1263–1287, https://doi.org/10.5194/wes-7-1263-2022, https://doi.org/10.5194/wes-7-1263-2022, 2022
Short summary
Short summary
The paper describes the design of a scaled wind turbine in detail, for studying wakes and wake control applications in the known, controllable and repeatable conditions of a wind tunnel. The scaled model is characterized by conducting experiments in two wind tunnels, in different conditions, using different measurement equipment. Results are also compared to predictions obtained with models of various fidelity. The analysis indicates that the model fully satisfies the initial requirements.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021, https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
Short summary
We develop two machine-learning-based approaches to temporally extrapolate uncertainty in hub-height wind speed modeled by a numerical weather prediction model. We test our approaches in the California Outer Continental Shelf, where a significant offshore wind energy development is currently being planned, and we find that both provide accurate results.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Hannah Livingston, Nicola Bodini, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-68, https://doi.org/10.5194/wes-2021-68, 2021
Preprint withdrawn
Short summary
Short summary
In this paper, we assess whether hub-height turbulence can easily be quantified from either other hub-height variables or ground-level measurements in complex terrain. We find a large variability across the three considered locations when trying to model hub-height turbulence intensity and turbulence kinetic energy. Our results highlight the nonlinear and complex nature of atmospheric turbulence, so that more powerful techniques should instead be recommended to model hub-height turbulence.
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021, https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Short summary
In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to demonstrate unmanned aircraft systems' capabilities in sampling the atmospheric boundary layer. Three Doppler lidars were deployed during this week-long experiment. We use data from these lidars to estimate turbulence dissipation rate. We observe large temporal variability and significant differences in dissipation for lidars with different sampling techniques.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Raghavendra Krishnamurthy, Rob K. Newsom, Larry K. Berg, Heng Xiao, Po-Lun Ma, and David D. Turner
Atmos. Meas. Tech., 14, 4403–4424, https://doi.org/10.5194/amt-14-4403-2021, https://doi.org/10.5194/amt-14-4403-2021, 2021
Short summary
Short summary
Planetary boundary layer (PBL) height is a critical parameter in atmospheric models. Continuous PBL height measurements from remote sensing measurements are important to understand various boundary layer mechanisms, especially during daytime and evening transition periods. Due to several limitations in existing methodologies to detect PBL height from a Doppler lidar, in this study, a machine learning (ML) approach is tested. The ML model is observed to improve the accuracy by over 50 %.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Maria A. Zawadowicz, Kaitlyn Suski, Jiumeng Liu, Mikhail Pekour, Jerome Fast, Fan Mei, Arthur J. Sedlacek, Stephen Springston, Yang Wang, Rahul A. Zaveri, Robert Wood, Jian Wang, and John E. Shilling
Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, https://doi.org/10.5194/acp-21-7983-2021, 2021
Short summary
Short summary
This paper describes the results of a recent field campaign in the eastern North Atlantic, where two mass spectrometers were deployed aboard a research aircraft to measure the chemistry of aerosols and trace gases. Very clean conditions were found, dominated by local sulfate-rich acidic aerosol and very aged organics. Evidence of
long-range transport of aerosols from the continents was also identified.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2065–2093, https://doi.org/10.5194/amt-14-2065-2021, https://doi.org/10.5194/amt-14-2065-2021, 2021
Short summary
Short summary
A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of velocity statistics is proposed. The LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. The optimal design of lidar scans is formulated as a two-cost-function optimization problem, including the minimization of the volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field.
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021, https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary
Short summary
The LiDAR Statistical Barnes Objective Analysis (LiSBOA) is applied to lidar data collected in the wake of wind turbines to reconstruct mean wind speed and turbulence intensity. Various lidar scans performed during a field campaign for a wind farm in complex terrain are analyzed. The results endorse the application of the LiSBOA for lidar-based wind resource assessment and farm diagnosis.
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021, https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Short summary
In July 2018, numerous weather sensing remotely piloted aircraft systems (RPASs) were flown in a flight week called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). As part of LAPSE-RATE, ground-based remote and in situ systems were also deployed to supplement and enhance observations from the RPASs. These instruments include multiple Doppler lidars, thermodynamic profilers, and radiosondes. This paper describes data from these systems.
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021, https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Lu Zhan, Stefano Letizia, and Giacomo Valerio Iungo
Wind Energ. Sci., 5, 1601–1622, https://doi.org/10.5194/wes-5-1601-2020, https://doi.org/10.5194/wes-5-1601-2020, 2020
Short summary
Short summary
Lidar measurements of wakes generated by isolated wind turbines are leveraged for optimal tuning of parameters of four engineering wake models. The lidar measurements are retrieved as ensemble averages of clustered data with incoming wind speed and turbulence intensity. It is shown that the optimally tuned wake models enable a significantly increased accuracy for predictions of wakes. The optimally tuned models are expected to enable generally enhanced performance for wind farms on flat terrain.
Nicola Bodini and Mike Optis
Wind Energ. Sci., 5, 1435–1448, https://doi.org/10.5194/wes-5-1435-2020, https://doi.org/10.5194/wes-5-1435-2020, 2020
Short summary
Short summary
Calculations of annual energy production (AEP) and its uncertainty are critical for wind farm financial transactions. Standard industry practice assumes that different uncertainty categories within an AEP calculation are uncorrelated and can therefore be combined through a sum of squares approach. In this project, we show the limits of this assumption by performing operational AEP estimates for over 470 wind farms in the United States and propose a more accurate way to combine uncertainties.
Peter Brugger, Mithu Debnath, Andrew Scholbrock, Paul Fleming, Patrick Moriarty, Eric Simley, David Jager, Jason Roadman, Mark Murphy, Haohua Zong, and Fernando Porté-Agel
Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, https://doi.org/10.5194/wes-5-1253-2020, 2020
Short summary
Short summary
A wind turbine can actively influence its wake by turning the rotor out of the wind direction to deflect the wake away from a downstream wind turbine. This technique was tested in a field experiment at a wind farm, where the inflow and wake were monitored with remote-sensing instruments for the wind speed. The behaviour of the wake deflection agrees with the predictions of two analytical models, and a bias of the wind direction perceived by the yawed wind turbine led to suboptimal power gains.
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020, https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.
Cited articles
Abraham, A. and Hong, J.: Operational-dependent wind turbine wake impact on surface momentum flux, Renew. Sust. Energ. Rev., 144, 111021, https://doi.org/10.1016/j.rser.2021.111021, 2021. a
Acevedo, O. C. and Fitzjarrald, D. R.: The early evening surface-layer transition: Temporal and spatial variability, J. Atmos. Sci., 58, 2650–2667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2, 2001. a
Armstrong, A., Burton, R. R., Lee, S. E., Mobbs, S., Ostle, N., Smith, V., Waldron, S., and Whitaker, J.: Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation, Environ. Res. Lett., 11, 044024, https://doi.org/10.1088/1748-9326/11/4/044024, 2016. a
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. a
Baidya Roy, S. and Traiteur, J. J.: Impacts of wind farms on surface air temperatures, P. Natl. Acad. Sci. USA, 107, 17899–17904, https://doi.org/10.1073/pnas.1000493107, 2010. a
Baidya Roy, S., Pacala, S. W., and Walko, R. L.: Can large wind farms affect local meteorology?, J. Geophys. Res.-Atmos., 109, D19101, https://doi.org/10.1029/2004JD004763, 2004. a
Beck, H. and Kühn, M.: Dynamic data filtering of long-range Doppler LiDAR wind speed measurements, Remote Sensing, 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Berg, L. K., Newsom, R. K., and Turner, D. D.: Year-long vertical velocity statistics derived from Doppler lidar data for the continental convective boundary layer, J. Appl. Meteorol. Clim., 56, 2441–2454, https://doi.org/10.1175/JAMC-D-16-0359.1, 2017. a
Blumberg, W. G., Wagner, T. J., Turner, D. D., and Correia, J.: Quantifying the Accuracy and Uncertainty of Diurnal Thermodynamic Profiles and Convection Indices Derived from the Atmospheric Emitted Radiance Interferometer, J. Appl. Meteorol. Clim., 56, 2747–2766, https://doi.org/10.1175/JAMC-D-17-0036.1, 2017. a, b
Bodini, N., Lundquist, J. K., and Moriarty, P.: Wind plants can impact long-term local atmospheric conditions, Sci. Rep., 11, 22939, https://doi.org/10.1038/s41598-021-02089-2, 2021. a, b
Bonin, T. A., Carroll, B. J., Hardesty, R. M., Brewer, W. A., Hajny, K., Salmon, O. E., and Shepson, P. B.: Doppler Lidar Observations of the Mixing Height in Indianapolis Using an Automated Composite Fuzzy Logic Approach, J. Atmos. Ocean. Tech., 35, 473–490, https://doi.org/10.1175/JTECH-D-17-0159.1, 2018. a
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., and Meneveau, C.: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer, J. Renew. Sustain. Energy, 2, 013106, https://doi.org/10.1063/1.3289735, 2010. a
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluids, 22, 015110, https://doi.org/10.1063/1.862466, iSBN: 1070-6631, 2010. a, b
Cheung, L., Hsieh, A., Blaylock, M., Herges, T., deVelder, N., Brown, K., Sakievich, P., Houck, D., Maniaci, D., Kaul, C., Rai, R., Hamilton, N., Rybchuk, A., Scott, R., Thedin, R., Brazell, M., Churchfield, M., and Sprague, M.: Investigations of Farm-to-Farm Interactions and Blockage Effects from AWAKEN Using Large-Scale Numerical Simulations, J. Phys. Conf. Ser., 2505, 012023, https://doi.org/10.1088/1742-6596/2505/1/012023, 2023. a
Coniglio, M. C., Correia, J., Marsh, P. T., and Kong, F.: Verification of Convection-Allowing WRF Model Forecasts of the Planetary Boundary Layer Using Sounding Observations, Weather Forecast., 28, 842–862, https://doi.org/10.1175/WAF-D-12-00103.1, 2013. a
Dai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., and Zhou, M.: Determining Boundary-Layer Height from Aircraft Measurements, Bound.-Lay. Meteorol., 152, 277–302, https://doi.org/10.1007/s10546-014-9929-z, 2014. a, b
Dang, R., Yang, Y., Hu, X.-M., Wang, Z., and Zhang, S.: A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data, Remote Sens., 11, 1590, https://doi.org/10.3390/rs11131590, 2019. a
Deardorff, J. W.: Parameterization of the Planetary Boundary layer for Use in General Circulation Models, Mon. Weather Rev., 100, 93–106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2, 1972. a
Delle Monache, L., Perry, K. D., Cederwall, R. T., and Ogren, J. A.: In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 2. Effects of mixing height on aerosol properties:, J. Geophys. Res., 109, D06209, https://doi.org/10.1029/2003JD004024, 2004. a
Duncan Jr., J. B., Bianco, L., Adler, B., Bell, T., Djalalova, I. V., Riihimaki, L., Sedlar, J., Smith, E. N., Turner, D. D., Wagner, T. J., and Wilczak, J. M.: Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign, Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, 2022. a, b, c
Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar measurement of profiles of turbulence and momentum flux, J. Atmos. Ocean. Tech., 6, 809–819, https://doi.org/10.1175/1520-0426(1989)006<0809:DLMOPO>2.0.CO;2, 1989. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model, Mon. Weather Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012. a
Fitch, A. C., Lundquist, J. K., and Olson, J. B.: Mesoscale influences of wind farms throughout a diurnal cycle, Mon. Weather Rev., 141, 2173–2198, https://doi.org/10.1175/MWR-D-12-00185.1, 2013. a, b, c, d
Frandsen, S.: On the wind speed reduction in the center of large clusters of wind turbines, J. Wind Eng. Ind. Aerod., 39, 251–265, https://doi.org/10.1016/0167-6105(92)90551-K, 1992. a
Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., Højstrup, J., and Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms, Wind Energy, 9, 39–53, https://doi.org/10.1002/we.189, 2006. a
Gan, C.-M., Wu, Y., Madhavan, B., Gross, B., and Moshary, F.: Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5 forecasts, Atmos. Environ., 45, 6613–6621, https://doi.org/10.1016/j.atmosenv.2011.09.013, 2011. a
Garratt, J. R.: The atmospheric boundary layer, Earth-Sci. Rev., 37, 89–134, https://doi.org/10.1016/0012-8252(94)90026-4, 1994. a
Gebauer, J., Jordan, A., Bell, T., Smith, E., and Bunting, L.: CLAMPS 2 AERI/Reviewed Data, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1994870, 2023. a
Hamilton, N. and Zalkind, D.: AWAKEN Site A1 – NREL Ceilometer (Vaisala CL51)/Derived Data, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/2221789, 2023. a
Hansen, K. S., Barthelmie, R. J., Jensen, L. E., and Sommer, A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, 15, 183–196, https://doi.org/10.1002/we.512, 2012. a
Hauke, J. and Kossowski, T.: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data, Quaestiones Geographicae, 30, 87–93, https://doi.org/10.2478/v10117-011-0021-1, 2011. a
Heffter, J. L.: Transport layer depth calculations, Second Joint Conference on Applications of Air Pollution Meteorology, New Orleans, LA, United States, 24–27 March 1980, 781–787 pp., https://doi.org/10.1175/1520-0477-61.1.65, 1980. a, b
Hsieh, A. S., Brown, K. A., deVelder, N. B., Herges, T. G., Knaus, R. C., Sakievich, P. J., Cheung, L. C., Houchens, B. C., Blaylock, M. L., and Maniaci, D. C.: High-fidelity wind farm simulation methodology with experimental validation, J. Wind Eng. Ind. Aerod., 218, 104754, https://doi.org/10.1016/j.jweia.2021.104754, 2021. a
Huang, M., Ma, P.-L., Chaney, N. W., Hao, D., Bisht, G., Fowler, M. D., Larson, V. E., and Leung, L. R.: Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime, Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, 2022. a
Jia, R., Ge, M., Zhang, Z., Li, X., and Du, B.: A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model, Energy, 307, 132600, https://doi.org/10.1016/j.energy.2024.132600, 2024. a
Jordan, A. M., Smith, E. N., Klein, P. M., Gebauer, J. G., and Wharton, S.: Probing the atmospheric boundary layer with integrated remote-sensing platforms during the American WAKE ExperimeNt (AWAKEN) campaign, J. Renew. Sustain. Energy, 16, 063305, https://doi.org/10.1063/5.0211717, 2024. a
Jozef, G., Cassano, J., Dahlke, S., and de Boer, G.: Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC, Atmos. Meas. Tech., 15, 4001–4022, https://doi.org/10.5194/amt-15-4001-2022, 2022. a, b
Keeler, E., Burk, K., and Kyrouac, J.: Balloon-Borne Sounding System (SONDEWNPN), Southern Great Plains (SGP), Billings, OK (Site H for AWAKEN). Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1595321, 2023. a
Kong, W. and Yi, F.: Convective boundary layer evolution from lidar backscatter and its relationship with surface aerosol concentration at a location of a central China megacity, J. Geophys. Res.-Atmos., 120, 7928–7940, https://doi.org/10.1002/2015JD023248, 2015. a
Konor, C. S., Boezio, G. C., Mechoso, C. R., and Arakawa, A.: Parameterization of PBL Processes in an Atmospheric General Circulation Model: Description and Preliminary Assessment, Mon. Weather Rev., 137, 1061–1082, https://doi.org/10.1175/2008MWR2464.1, 2009. a
Kotthaus, S., Bravo-Aranda, J. A., Collaud Coen, M., Guerrero-Rascado, J. L., Costa, M. J., Cimini, D., O'Connor, E. J., Hervo, M., Alados-Arboledas, L., Jiménez-Portaz, M., Mona, L., Ruffieux, D., Illingworth, A., and Haeffelin, M.: Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations, Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, 2023. a
Lee, J., Hong, J.-W., Lee, K., Hong, J., Velasco, E., Lim, Y. J., Lee, J. B., Nam, K., and Park, J.: Ceilometer Monitoring of Boundary-Layer Height and Its Application in Evaluating the Dilution Effect on Air Pollution, Bound.-Lay. Meteorol., 172, 435–455, https://doi.org/10.1007/s10546-019-00452-5, 2019. a
Letizia, S.: AWAKEN Site B – NREL Thermodynamic profiler (Assist II-11)/TROPoe retrieval, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/2000686, 2023a. a
Letizia, S.: AWAKEN Site C1a – NREL Thermodynamic profiler (Assist II-12)/TROPoe retrieval, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/2000688, 2023b. a
Letizia, S.: AWAKEN Site G – NREL Thermodynamic profiler (Assist II-10)/TROPoe retrieval, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/2000689, 2023c. a
Letizia, S., Bodini, N., Krishnamurthy, R., and Newsom, R.: AWAKEN Site A1 – ARM Scanning Lidar (Halo XR)/Derived Data – Wind Statistics, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1999171, 2023a. a
Letizia, S., Bodini, N., Krishnamurthy, R., and Newsom, R.: AWAKEN Site H – ARM Scanning Lidar (Halo XR)/Derived Data – Wind Statistics, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1999181, 2023b. a
Letizia, S., Robey, R., Bodini, N., Sanchez Gomez, M., Lundquist, J. K., Krishnamurthy, R., and Moriarty, P. J.: Tilted lidar profiling: Development and testing of a novel scanning strategy for inhomogeneous flows, J. Renew. Sustain. Ener., 16, 043310, https://doi.org/10.1063/5.0209729, 2024. a, b, c
Li, Y., Kalnay, E., Motesharrei, S., Rivas, J., Kucharski, F., Kirk-Davidoff, D., Bach, E., and Zeng, N.: Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation, Science, 361, 1019–1022, https://doi.org/10.1126/science.aar5629, 2018a. a
Li, Y., He, J., Li, J., Ren, H.-L., Wang, H., Luo, W., Gong, S., Che, H., and Zhang, X.: Sensitivity analysis of the WRF simulated planetary boundary layer height to synoptic conditions over eastern China, Atmos. Res., 303, 107330, https://doi.org/10.1016/j.atmosres.2024.107330, 2024. a
Li, Z., Lyu, S., Wen, L., Zhao, L., Meng, X., and Ao, Y.: Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake, Theor. Appl. Climatol., 133, 1191–1205, https://doi.org/10.1007/s00704-017-2258-7, 2018b. a
Lieman, R. and Alpert, E.: Investigation of the planetary boundary layer height variations over complex terrain, Bound.-Lay. Meteorol., 62, 129–142, https://doi.org/10.1007/BF00705550, 1993. a
Liu, S. and Liang, X. Z.: Observed diurnal cycle climatology of planetary boundary layer height, J. Climate, 23, 5790–5809, https://doi.org/10.1175/2010JCLI3552.1, 2010. a, b, c
Lu, H. and Porté-Agel, F.: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer, Phys. Fluids, 23, 065101, https://doi.org/10.1063/1.3589857, 2011. a
Lu, H. and Porté-Agel, F.: On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 157, 81–96, https://doi.org/10.1007/s10546-015-0049-1, 2015. a
Lundquist, J. K., Churchfield, M. J., Lee, S., and Clifton, A.: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics, Atmos. Meas. Tech., 8, 907–920, https://doi.org/10.5194/amt-8-907-2015, 2015. a
Magnusson, M. and Smedman, A.-S.: Influence of atmospheric stability on wind turbine wakes, Wind Eng., 18, 139–152, 1994. a
Miao, Y., Liu, S., and Huang, S.: Synoptic pattern and planetary boundary layer structure associated with aerosol pollution during winter in Beijing, China, Sci. Total Environ., 682, 464–474, https://doi.org/10.1016/j.scitotenv.2019.05.199, 2019. a, b
Miller, L. M. and Keith, D. W.: Climatic Impacts of Wind Power, Joule, 2, 1–15, https://doi.org/10.1016/j.joule.2018.09.009, 2018. a
Monks, P., Granier, C., Fuzzi, S., Stohl, A., Williams, M., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R., Carslaw, K., Cooper, O., Dentener, F., Fowler, D., Fragkou, E., Frost, G., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I., Jenkin, M., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M., Lee, J., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J., O'Dowd, C., Palmer, P., Parrish, D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A., Reeves, C., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., Ten Brink, H., Theloke, J., Van Der Werf, G., Vautard, R., Vestreng, V., Vlachokostas, C., and Von Glasow, R.: Atmospheric composition change – global and regional air quality, Atmos. Environ., 43, 5268–5350, https://doi.org/10.1016/j.atmosenv.2009.08.021, 2009. a
Moriarty, P., Bodini, N., Letizia, S., Abraham, A., Ashley, T., Bärfuss, K. B., Barthelmie, R. J., Brewer, A., Brugger, P., Feuerle, T., Frère, A., Goldberger, L., Gottschall, J., Hamilton, N., Herges, T., Hirth, B., Hung, L.-Y. L., Iungo, G. V., Ivanov, H., Kaul, C., Kern, S., Klein, P., Krishnamurthy, R., Lampert, A., Lundquist, J. K., Morris, V. R., Newsom, R., Pekour, M., Pichugina, Y., Porté-Angel, F., Pryor, S. C., Scholbrock, A., Schroeder, J., Shartzer, S., Simley, E., Vöhringer, L., Wharton, S., and Zalkind, D.: Overview of preparation for the American WAKE ExperimeNt (AWAKEN), J. Renew. Sustain. Energ., 16, 053306, https://doi.org/10.1063/5.0141683, 2024. a
Münkel, C., Eresmaa, N., Räsänen, J., and Karppinen, A.: Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol., 124, 117–128, 2007. a
Narasimhan, G., Gayme, D. F., and Meneveau, C.: Analytical Wake Modeling in Atmospheric Boundary Layers: Accounting for Wind Veer and Thermal Stratification, J. Phys. Conf. Ser., 2767, 092018, https://doi.org/10.1088/1742-6596/2767/9/092018, 2024. a
Neggers, R. A. J., Ackerman, A. S., Angevine, W. M., Bazile, E., Beau, I., Blossey, P. N., Boutle, I. A., De Bruijn, C., Cheng, A., Van Der Dussen, J., Fletcher, J., Dal Gesso, S., Jam, A., Kawai, H., Cheedela, S. K., Larson, V. E., Lefebvre, M., Lock, A. P., Meyer, N. R., De Roode, S. R., De Rooy, W., Sandu, I., Xiao, H., and Xu, K.: Single‐Column Model Simulations of Subtropical Marine Boundary‐Layer Cloud Transitions Under Weakening Inversions, J. Adv. Model. Earth Sy., 9, 2385–2412, https://doi.org/10.1002/2017MS001064, 2017. a
Newsom, R. K., Brewer, W. A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., and Lundquist, J. K.: Validating precision estimates in horizontal wind measurements from a Doppler lidar, Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/amt-10-1229-2017, 2017. a, b
Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 8, 2251–2266, https://doi.org/10.5194/amt-8-2251-2015, 2015. a
Pekour, M.: Site A5 – PNNL Surface Flux Station/Daily Fluxes, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1899848, 2023a. a, b
Pekour, M.: Site G – PNNL Surface Flux Station/Daily Fluxes, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1899846, 2023b. a, b
Pekour, M.: Site A1 – PNNL Surface Flux Station/Daily Fluxes, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1991103, 2024a. a, b
Pekour, M.: Site A2 – PNNL Surface Flux Station/Daily Fluxes, Wind Data Hub for U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1899850, 2024b. a, b
Pichugina, Y. L. and Banta, R. M.: Stable boundary layer depth from high-resolution measurements of the mean wind profile, J. Appl. Meteorol. Clim., 49, 20–35, https://doi.org/10.1175/2009JAMC2168.1, 2010. a
Puccioni, M., Moss, C., Solari, M., Roy, S., Iungo, G., Wharton, S., and Moriarty, P.: Quantification and assessment of the atmospheric boundary layer height measured during the AWAKEN experiment by a scanning LiDAR, J. Renew. Sustain. Energ., 16, 053304, https://doi.org/10.1063/5.0211259, 2024. a
Quint, D., Lundquist, J. K., Bodini, N., and Rosencrans, D.: Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy, Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025, 2025. a, b
Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S., Prueger, J. H., Horst, T. W., Rhodes, M. E., Pfeiffer, R., Hatfield, J. L., Spoth, K. K., and Doorenbos, R. K.: Crop wind energy experiment (CWEX): observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm, B. Am. Meteorol. Soc., 94, 655–672, https://doi.org/10.1175/BAMS-D-11-00240.1, 2013. a
Sathe, A., Mann, J., Vasiljevic, N., and Lea, G.: A six-beam method to measure turbulence statistics using ground-based wind lidars, Atmos. Meas. Tech., 8, 729–740, https://doi.org/10.5194/amt-8-729-2015, 2015. a, b
Sinclair, V. A., Ritvanen, J., Urbancic, G., Erner, I., Batrak, Y., Moisseev, D., and Kurppa, M.: Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations, Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, 2022. a
Sisterson, D. L., Peppler, R. A., Cress, T. S., Lamb, P. J., and Turner, D. D.: The ARM Southern Great Plains (SGP) Site, Meteor. Mon., 57, 6.1–6.14, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1, 2016. a
Sivaraman, C., McFarlane, S., Chapman, E., Jensen, M., Toto, T., Liu, S., and Fischer, M.: Planetary Boundary Layer (PBL) Height Value Added Product (VAP): Radiosonde Retrievals, Tech. rep., ARM User Facility, U.S. Department of Energy Office of Science, DOE/SC-ARM/TR-132, https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-132.pdf (last access: 1 August 2023), 2013. a, b
Smith, C. M., Barthelmie, R. J., and Pryor, S. C.: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles, Environmen. Res. Lett., 8, 034006, https://doi.org/10.1088/1748-9326/8/3/034006, 2013. a
Stevens, R. J. and Meneveau, C.: Flow structure and turbulence in wind farms, Annu. Rev. Fluid Mech., 49, 311–339, 2017. a
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluewer Academic Publishers, Dordrecht, https://doi.org/10.1007/978-94-009-3027-8, 1988. a, b, c
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018. a
Tucker, S. C., Senff, C. J., Weickmann, A. M., Brewer, W. A., Banta, R. M., Sandberg, S. P., Law, D. C., and Hardesty, R. M.: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles, J. Atmos. Ocean. Tech., 26, 673–688, https://doi.org/10.1175/2008JTECHA1157.1, 2009. a, b, c
Turner, D.: Tropospheric Optimal Estimation Retrieval (TROPOE), Southern Great Plains (SGP), Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) User Facility [data set], https://doi.org/10.5439/1996977, 2024. a
Turner, D. D. and Blumberg, W. G.: Improvements to the AERIoe Thermodynamic Profile Retrieval Algorithm, IEEE J. Sel. Top. Appl., 12, 1339–1354, https://doi.org/10.1109/JSTARS.2018.2874968, 2019. a
Turner, D. D. and Löhnert, U.: Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol. Clim., 53, 752–771, https://doi.org/10.1175/JAMC-D-13-0126.1, 2014. a, b
Turner, D. D. and Löhnert, U.: Ground-based temperature and humidity profiling: combining active and passive remote sensors, Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, 2021. a, b
USGS: USGS US Topo Map Collection, USGS, https://apps.nationalmap.gov/downloader/ (last access: 6 November 2024), 2023. a
Vermeer, L. J., Sørensen, J. N., and Crespo, A.: Wind turbine wake aerodynamics, Prog. Aerosp. Sci., 39, 467–510, https://doi.org/10.1016/S0376-0421(03)00078-2, 2003. a
Vickers, D. and Mahrt, L.: Evaluating formulations of stable boundary layer height, J. Appl. Meteorol. Clim., 43, 1736–1749, https://doi.org/10.1175/JAM2160.1, 2004. a
Wharton, S., Simpson, M., Osuna, J. L., Newman, J. F., and Biraud, S. C.: Role of surface energy exchange for simulating wind turbine inflow: a case study in the Southern Great Plains, USA, Atmosphere, 6, 21–49, https://doi.org/10.3390/atmos6010021, 2014. a
Wu, K. and Porté-Agel, F.: Flow Adjustment Inside and Around Large Finite-Size Wind Farms, Energies, 10, 2164, https://doi.org/10.3390/en10122164, 2017. a, b, c, d
Wu, Y. T. and Porté-Agel, F.: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations, Bound.-Lay. Meteorol., 138, 345–366, https://doi.org/10.1007/s10546-010-9569-x, 2011. a
Xia, G., Zhou, L., Minder, J. R., Fovell, R. G., and Jimenez, P. A.: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: physical mechanisms, Clim. Dynam., 53, 1723–1739, https://doi.org/10.1007/s00382-019-04725-0, 2019. a
Zhang, D., Comstock, J., and Morris, V.: Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data, Atmos. Meas. Tech., 15, 4735–4749, https://doi.org/10.5194/amt-15-4735-2022, 2022. a, b
Zhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang, L., and Zhu, T.: Research progress on estimation of the atmospheric boundary layer height, J. Meteorol. Res., 34, 482–498, https://doi.org/10.1007/s13351-020-9910-3, 2020. a
Zhang, W., Markfort, C. D., and Porté-Agel, F.: Wind-turbine wakes in a convective boundary layer: A wind-tunnel study, Bound.-Lay. Meteorol., 146, 161–179, https://doi.org/10.1007/s10546-012-9751-4, 2013. a
Zhou, L., Tian, Y., Baidya Roy, S., Thorncroft, C., Bosart, L. F., and Hu, Y.: Impacts of wind farms on land surface temperature, Nat. Clim. Change, 2, 539–543, https://doi.org/10.1038/nclimate1505, 2012. a
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
This study is the first to use real-world atmospheric measurements to show that large wind...
Special issue
Altmetrics
Final-revised paper
Preprint