Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-2051-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-2051-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation into the instantaneous centre of rotation for enhanced design of floating offshore wind turbines
Katarzyna Patryniak
CORRESPONDING AUTHOR
Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK
Maurizio Collu
Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK
Jason Jonkman
National Renewable Energy Laboratory, Golden, CO, USA
Matthew Hall
National Renewable Energy Laboratory, Golden, CO, USA
Garrett Barter
National Renewable Energy Laboratory, Golden, CO, USA
Daniel Zalkind
National Renewable Energy Laboratory, Golden, CO, USA
Andrea Coraddu
Faculty of Mechanical Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Øyvind Waage Hanssen-Bauer, Paula Doubrawa, Helge Aa. Madsen, Henrik Asmuth, Jason Jonkman, Gunner C. Larsen, Stefan Ivanell, and Roy Stenbro
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-163, https://doi.org/10.5194/wes-2025-163, 2025
Preprint under review for WES
Short summary
Short summary
We studied how different industry-oriented computer models predict the behavior of winds behind turbines in a wind farm. These "wakes" reduce energy output and can affect turbines further down the row. By comparing these three models with more detailed simulations, we found they agree well on overall power but differ in how they capture turbulence and wear on machines. Our results show where the models need improvement to make wind farm computer models more accurate and reliable in the future.
Veronica Liverud Krathe, Jason Jonkman, and Erin Elizabeth Bachynski-Polić
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-92, https://doi.org/10.5194/wes-2025-92, 2025
Preprint under review for WES
Short summary
Short summary
This study looks into how changes in wind direction with height and drivetrain flexibility influence the behavior of large floating wind turbines. Using numerical simulations, it was found that these factors can significantly impact the lifetime of the turbines. These results suggest that standardized design methods may underestimate fatigue and that improved modeling could enhance turbine reliability as turbines continue to grow in size.
Matthew Hall, Lucas Carmo, and Ericka Lozon
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-58, https://doi.org/10.5194/wes-2025-58, 2025
Revised manuscript under review for WES
Short summary
Short summary
This paper presents a frequency-domain dynamics modeling approach for multiple floating wind turbines that are connected by shared mooring lines. It models the wave excitation and response of each floating platform, and computes the shared mooring line reactions based on the relative platform motions. A two-turbine scenario demonstrates the approach, and comparison with an established time-domain model verifies its accuracy. The results reveal a new shared-mooring tension-dynamics phenomenon.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci., 10, 1033–1053, https://doi.org/10.5194/wes-10-1033-2025, https://doi.org/10.5194/wes-10-1033-2025, 2025
Short summary
Short summary
We investigate asymmetries in terms of power performance and fatigue loading on a five-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintaining good power gains and show that a partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 10, 941–970, https://doi.org/10.5194/wes-10-941-2025, https://doi.org/10.5194/wes-10-941-2025, 2025
Short summary
Short summary
Numerical models, used to assess loads on floating offshore wind turbines, require many input parameters to describe air and water conditions, system properties, and load calculations. All parameters have some possible range, due to uncertainty and/or variations with time. The selected values can have important effects on the uncertainty in the resulting loads. This work identifies the input parameters that have the most impact on ultimate and fatigue loads for extreme storm load cases.
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024, https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Short summary
As climate change increasingly impacts our daily lives, a transition towards cleaner energy is needed. With all the growth in floating offshore wind and the planned floating wind farms (FWFs) in the next few years, we urgently need new techniques and methodologies to accommodate the differences between the fixed bottom and FWFs. This paper presents a novel methodology to decrease aerodynamic losses inside an FWF by passively relocating the downwind floating wind turbines out of the wakes.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024, https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary
Short summary
This paper provides a comparison for a floating offshore wind turbine between the motion and loading estimated by numerical models and measurements. The floating support structure is a novel design that includes a counterweight to provide floating stability to the system. The comparison between numerical models and the measurements includes system motion, tower loads, mooring line loads, and loading within the floating support structure.
Claudio Alexis Rodríguez Castillo, Baran Yeter, Shen Li, Feargal Brennan, and Maurizio Collu
Wind Energ. Sci., 9, 533–554, https://doi.org/10.5194/wes-9-533-2024, https://doi.org/10.5194/wes-9-533-2024, 2024
Short summary
Short summary
A detailed review of ocean renewable systems, with focus on offshore wind, for the offshore production of green fuels was conducted. Engineering tools and methodologies and their suitability for the design and operation of offshore H2 systems were reviewed. Distinct from wind electricity generation, the support platforms for offshore H2 systems involve additional requirements and constraints. Challenges and opportunities for the offshore H2 systems are discussed.
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Short summary
In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore wind turbine. The article present methods to obtain reduced-order models of floating wind turbines. The models are used to form a digital twin which combines measurements from the TetraSpar prototype (a full-scale floating offshore wind turbine) to estimate signals that are not typically measured.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Will Wiley, Jason Jonkman, Amy Robertson, and Kelsey Shaler
Wind Energ. Sci., 8, 1575–1595, https://doi.org/10.5194/wes-8-1575-2023, https://doi.org/10.5194/wes-8-1575-2023, 2023
Short summary
Short summary
A sensitivity analysis determined the modeling parameters for an operating floating offshore wind turbine with the biggest impact on the ultimate and fatigue loads. The loads were the most sensitive to the standard deviation of the wind speed. Ultimate and fatigue mooring loads were highly sensitive to the current speed; only the fatigue mooring loads were sensitive to wave parameters. The largest platform rotation was the most sensitive to the platform horizontal center of gravity.
Paula Doubrawa, Kelsey Shaler, and Jason Jonkman
Wind Energ. Sci., 8, 1475–1493, https://doi.org/10.5194/wes-8-1475-2023, https://doi.org/10.5194/wes-8-1475-2023, 2023
Short summary
Short summary
Wind turbines are designed to withstand any wind conditions they might encounter. This includes high-turbulence flow fields found within wind farms due to the presence of the wind turbines themselves. The international standard allows for two ways to account for wind farm turbulence in the design process. We compared both ways and found large differences between them. To avoid overdesign and enable a site-specific design, we suggest moving towards validated, higher-fidelity simulation tools.
Adebayo Ojo, Maurizio Collu, and Andrea Coraddu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-96, https://doi.org/10.5194/wes-2023-96, 2023
Revised manuscript not accepted
Short summary
Short summary
This is a nouvelle work conducted to aid the expedition of the Floating Offshore Wind Turbine (FOWT) technology to be as commercially viable as the fixed bottom foundation counterpart. This work is focused on the shape alteration of the FOWT platform within an optimization framework to reduce the cost of material for manufacturing the platforms; therefore, reducing the levelized cost of energy. This study also shows economics of scale further reduces the LCOE when the farm's size is increased.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Kelsey Shaler, Amy N. Robertson, and Jason Jonkman
Wind Energ. Sci., 8, 25–40, https://doi.org/10.5194/wes-8-25-2023, https://doi.org/10.5194/wes-8-25-2023, 2023
Short summary
Short summary
This work evaluates which wind-inflow- and wake-related parameters have the greatest influence on fatigue and ultimate loads for turbines in a small wind farm. Twenty-eight parameters were screened using an elementary effects approach to identify the parameters that lead to the largest variation in these loads of each turbine. The findings show the increased importance of non-streamwise wind components and wake parameters in fatigue and ultimate load sensitivity of downstream turbines.
Julian Quick, Ryan N. King, Garrett Barter, and Peter E. Hamlington
Wind Energ. Sci., 7, 1941–1955, https://doi.org/10.5194/wes-7-1941-2022, https://doi.org/10.5194/wes-7-1941-2022, 2022
Short summary
Short summary
Wake steering is an emerging wind power plant control strategy where upstream turbines are intentionally yawed out of alignment with the incoming wind, thereby steering wakes away from downstream turbines. Trade-offs between the gains in power production and fatigue loads induced by this control strategy are the subject of continuing investigation. In this study, we present an optimization approach for efficiently exploring the trade-offs between power and loading during wake steering.
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022, https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Short summary
This work introduces the FLOW Estimation and Rose Superposition (FLOWERS) wind turbine wake model. This model analytically integrates the wake over wind directions to provide a time-averaged flow field. This new formulation is used to perform layout optimization. The FLOWERS model provides a smooth flow field over an entire wind plant at fraction of the computational cost of the standard numerical integration approach.
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022, https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Short summary
Using highly accurate simulations within a design cycle is prohibitively computationally expensive. We implement and present a multifidelity optimization method and showcase its efficacy using three different case studies. We examine aerodynamic blade design, turbine controls tuning, and a wind plant layout problem. In each case, the multifidelity method finds an optimal design that performs better than those obtained using simplified models but at a lower cost than high-fidelity optimization.
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Short summary
This paper summarizes efforts done to understand the impact of design parameter variations in the physical system (e.g., mass, stiffness, geometry, aerodynamic, and hydrodynamic coefficients) on the linearized system using OpenFAST in support of the development of the WEIS toolset to enable controls co-design of floating offshore wind turbines.
Emmanuel Branlard, Ian Brownstein, Benjamin Strom, Jason Jonkman, Scott Dana, and Edward Ian Baring-Gould
Wind Energ. Sci., 7, 455–467, https://doi.org/10.5194/wes-7-455-2022, https://doi.org/10.5194/wes-7-455-2022, 2022
Short summary
Short summary
In this work, we present an aerodynamic tool that can model an arbitrary collections of wings, blades, rotors, and towers. With these functionalities, the tool can be used to study and design advanced wind energy concepts, such as horizontal-axis wind turbines, vertical-axis wind turbines, kites, or multi-rotors. This article describes the key features of the tool and presents multiple applications. Field measurements of horizontal- and vertical-axis wind turbines are used for comparison.
Ethan Young, Jeffery Allen, John Jasa, Garrett Barter, and Ryan King
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-7, https://doi.org/10.5194/wes-2022-7, 2022
Preprint withdrawn
Short summary
Short summary
In this study, we present ways to measure the phenomenon of wind plant blockage, or the the velocity slowdown upstream from a farm, and carry out turbine layout optimizations to reduce this effect. We find that farm-wide measurements provide a better characterization of blockage compared to more localized measurements and that, in the absence of any constraint on total power output, layouts which minimize the effect of blockage are frequently characterized by streamwise alignment of turbines.
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022, https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
Short summary
Floating offshore wind technology has high potential but still faces challenges for gaining economic competitiveness to allow commercial market uptake. Hence, design optimization plays a key role; however, the final optimum floater obtained highly depends on the specified optimization problem. Thus, by considering alternative structural realization approaches, not very stringent limitations on the structure and dimensions are required. This way, more innovative floater designs can be captured.
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Short summary
The publication of the Reference Open-Source Controller (ROSCO) provides a controller and generic controller tuning process to the wind energy research community that can perform comparably or better than existing reference wind turbine controllers and includes features that are consistent with industry standards. Notably, ROSCO provides the first known open-source controller with features that specifically address floating offshore wind turbine control.
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021, https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Short summary
We perform a validation of the new simulation tool FAST.Farm for the prediction of power output and structural loads in single wake conditions with respect to measurement data from the offshore wind farm alpha ventus. With a new wake-added turbulence functionality added to FAST.Farm, good agreement between simulations and measurements is achieved for the considered quantities. We hereby give insights into load characteristics of an offshore wind turbine subjected to single wake conditions.
Cited articles
Costa, D., Fernandes, A. C., Sales Junior, J. S., and Asgari, P.: Instantaneous Center of Rotation in Pitch Response of a FPSO Submitted to Head Waves: Ocean Engineering of International Conference on Offshore Mechanics and Arctic Engineering, ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018, 7A, ISBN 978-0-7918-5126-5, https://doi.org/10.1115/OMAE2018-78098, 2018. a
Costa, D., Fernandes, A. C., and Sales Junior, J. S.: Further study on the Instantaneous Rotation Center in Pitch and its distribution in space for a moored vessel submitted to head regular waves, Ocean Eng., 218, 108161 https://doi.org/10.1016/j.oceaneng.2020.108161, 2020a. a
Costa, D., Sales Junior, J. S., and Fernandes, A. C.: Instantaneous Center of Rotation of a Vessel Submitted to Oblique Waves, Ocean Engineering of International Conference on Offshore Mechanics and Arctic Engineering, ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, Virtual, Online. 3–7 August 2020, 6B, ISBN 978-0-7918-8438-6, https://doi.org/10.1115/OMAE2020-18860, 2020b. a
Eliassen, L.: Aerodynamic Loads on a Wind Turbine Rotor in Axial Motion, Ph.D. thesis, University of Stavanger, Stavanger, Norway, 2015. a
Fernandes, A. C., Asgari, P., and Soares, A. R.: Asymmetric roll center of symmetric body in beam waves, Ocean Eng., 112, 66–75, 2016. a
Hall, M. and Goupee, A.: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data, Ocean Eng., 104, 590–603, https://doi.org/10.1016/j.oceaneng.2015.05.035, 2015. a
Hall, M., Housner, S., Zalkind, D., Bortolotti, P., Ogden, D., and Barter, G.: An Open-Source Frequency-Domain Model for Floating Wind Turbine Design Optimization, J. Phys. Conf. Ser., 2265, 042020, https://doi.org/10.1088/1742-6596/2265/4/042020, 2022. a
Haslum, H. A. and Faltinsen, O. M.: Simplified methods applied to nonlinear motion of spar platforms, thesis submitted in partial fulfilment of the requirements for the degree of Doktor Ingenipr., Trondheim, 2000. a
Hodges, J. L. J.: The Significance Probability of the Smirnov Two-Sample Test, Arkiv för Matematik, 3, 469–486, 1958. a
IEC: Technical Specification IEC 61400-3-1:2019, Wind energy generation systems –Part 3-1: Design requirements for fixed offshore wind turbines, International Standard, IEC, Geneva, Switzerland, ISBN 978-2-8322-76099, https://webstore.iec.ch/en/publication/29360 (last access: 26 February 2025), 2019. a
IEC: Technical Specification IEC TS 61400-3-2:2019, Wind energy generation systems–Part 3-2: Design requirements for floating offshore wind turbines, Technical Specification, IEC, Geneva, Switzerland; ISBN 978-2-8322-5986-3, https://webstore.iec.ch/en/publication/29244 (last access: 26 February 2025), 2019. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, https://doi.org/10.2172/947422, 2009. a, b, c
Jonkman, J. M.: The New Modularization Framework for the FAST Wind Turbine CAE Tool, in: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 7–10, American Institute of Aeronautics and Astronautics, Grapevine (Dallas/Ft. Worth Region), TX, AIAA-2013-0202, NREL/CP-5000-57228, Golden, CO: National Renewable Energy Laboratory, https://doi.org/10.2514/6.2013-202, 2013. a
Jonkman, J. M., Branlard, E. S. P., and Jasa, J. P.: Influence of wind turbine design parameters on linearized physics-based models in OpenFAST, Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, 2022. a
Kaptan, M., Skaare, B., Jiang, Z., and Ong, M. C.: Analysis of spar and semi-submersible floating wind concepts with respect to human exposure to motion during maintenance operations, Mar. Struct., 83, https://doi.org/10.1016/j.marstruc.2021.103145, 2022. a
Lee, C. H. and Newman, J. N.: WAMIT User Manual, Versions 6.4, Tech. rep., Massachusetts Institute of Technology, 2006. a
Lemmer, F., Yu, W., Müller, K., and Cheng, P. W.: Semi-submersible wind turbine hull shape design for a favorable system response behavior, Mar. Struct., 71, https://doi.org/10.1016/j.marstruc.2020.102725, 2020. a
NREL: OpenFAST, v3.5, GitHub [code], https://github.com/OpenFAST/openfast/ (last access: 31 December 2024), 2024a. a
NREL: pyHAMS: Python-based Hydrodynamic Analysis of Marine Structures, GitHub [code], https://github.com/WISDEM/pyHAMS (last access: 26 February 2025), 2024b. a
NREL: RAFT, GitHub [code], https://github.com/WISDEM/pyHAMS (last access: 26 February 2025), 2024c. a
Patryniak, K., Collu, M., and Coraddu, A.: Rigid body dynamic response of a floating offshore wind turbine to waves: Identification of the instantaneous centre of rotation through analytical and numerical analyses, Renewable Energy, 218, 119378, https://doi.org/10.1016/j.renene.2023.119378, 2023. a, b, c, d, e, f
Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., and Luan, C.: Definition of the Semisubmersible Floating System for Phase II of OC4, National Renewable Energy Laboratory, 2014. a
Scottish Government: Sectoral Marine Plan for Offshore Wind Energy, Tech. rep., https://www.gov.scot/publications/sectoral-marine-plan-offshore-wind-energy/ (last access: 26 February 2024), 2020. a
Souza, F. R. S.: Influência do Centro de Rotação através de ensaios de decaimento no movimento de balanço transversal de cascos típicos de FPSO, Undergraduate Research Project, Escola de Engenharia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, 2012. a
Standing, R.: Prediction Of Viscous Roll Damping And Response Of Transportation Barges In Waves, International Ocean and Polar Engineering Conference, ISOPE 91, 1st Intnl Offshore & Polar Engng Conference, Edinburgh, U.K., 11-16 August 1991, III, 409, ISBN 0-9626104-61, 1991. a
Stewart, W. P. and Ewers, W. A.: Wave Induced Motions of Marine Deck Cargo Barges, in: Second International Conference on Behaviour of Off-Shore Structures, BOSS'79, Imperial College, London, Imperial College, London, England 28–31 August 1979, 1979. a
Short summary
This paper studies the instantaneous centre of rotation (ICR) of floating offshore wind turbines (FOWTs). We present a method for computing the ICR and examine the correlations between the external loading, design features, ICR statistics, motions, and loads. We demonstrate how to apply the new insights to successfully modify the designs of the spar and semisubmersible FOWTs to reduce the loads in the moorings, the tower, and the blades, improving the ultimate strength and fatigue properties.
This paper studies the instantaneous centre of rotation (ICR) of floating offshore wind turbines...
Altmetrics
Final-revised paper
Preprint