Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 555–570, 2021
https://doi.org/10.5194/wes-6-555-2021
Wind Energ. Sci., 6, 555–570, 2021
https://doi.org/10.5194/wes-6-555-2021

Research article 22 Apr 2021

Research article | 22 Apr 2021

The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows

Luis A. Martínez-Tossas et al.

Related authors

FLOWERS: An integral approach to engineering wake models
Michael LoCascio, Christopher Bay, Majid Bastankhah, Garrett Barter, Paul Fleming, and Luis Martínez-Tossas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-116,https://doi.org/10.5194/wes-2021-116, 2021
Preprint under review for WES
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Unlocking the Full Potential of Wake Steering: Implementation and Assessment of a Controls-Oriented Model
Christopher J. Bay, Jennifer King, Paul Fleming, Rafael Mudafort, and Luis A. Martínez-Tossas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-19,https://doi.org/10.5194/wes-2019-19, 2019
Preprint withdrawn
Short summary
The aerodynamics of the curled wake: a simplified model in view of flow control
Luis A. Martínez-Tossas, Jennifer Annoni, Paul A. Fleming, and Matthew J. Churchfield
Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019,https://doi.org/10.5194/wes-4-127-2019, 2019
Short summary
A simulation study demonstrating the importance of large-scale trailing vortices in wake steering
Paul Fleming, Jennifer Annoni, Matthew Churchfield, Luis A. Martinez-Tossas, Kenny Gruchalla, Michael Lawson, and Patrick Moriarty
Wind Energ. Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018,https://doi.org/10.5194/wes-3-243-2018, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines
David H. Wood and Eric J. Limacher
Wind Energ. Sci., 6, 1413–1425, https://doi.org/10.5194/wes-6-1413-2021,https://doi.org/10.5194/wes-6-1413-2021, 2021
Short summary
Experimental analysis of radially resolved dynamic inflow effects due to pitch steps
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021,https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021,https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Ducted wind turbines in yawed flow: a numerical study
Vinit Dighe, Dhruv Suri, Francesco Avallone, and Gerard van Bussel
Wind Energ. Sci., 6, 1263–1275, https://doi.org/10.5194/wes-6-1263-2021,https://doi.org/10.5194/wes-6-1263-2021, 2021
Short summary
UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021,https://doi.org/10.5194/wes-6-1169-2021, 2021
Short summary

Cited articles

Adaramola, M. and Krogstad, P.-A.: Experimental investigation of wake effects on wind turbine performance, Renew. Energy, 36, 2078–2086, 2011. a
Ainslie, J.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Indust. Aerodynam., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988.  a
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a
Bartl, J., Mühle, F., Schottler, J., Saetran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Ener. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018. a
Download
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.