Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parameter analysis of a multi-element airfoil for application to airborne wind energy
Gianluca De Fezza
CORRESPONDING AUTHOR
Institute of Energy Technology, Eastern Switzerland University of Applied Sciences (OST), Oberseestrasse 10, 8640 Rapperswil-Jona, Switzerland
Sarah Barber
Institute of Energy Technology, Eastern Switzerland University of Applied Sciences (OST), Oberseestrasse 10, 8640 Rapperswil-Jona, Switzerland
Related authors
No articles found.
Philip Imanuel Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Alexander Popp, Sarah Barber, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-26, https://doi.org/10.5194/wes-2025-26, 2025
Preprint under review for WES
Short summary
Short summary
New designs of large wind turbine blades have become increasingly flexible, and thus need cost-efficient monitoring solutions. Hence, we investigate if aerodynamic pressure measurements from a low-cost sensing system can be used to detect structural damage. Our research is based on a wind tunnel study, emulating a simplified wind turbine blade under various conditions. We show that using a convolutional neural network-based method, structural damage can indeed be detected and its severity rated.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114, https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Short summary
We further enhanced a knowledge base for choosing the most optimal wind resource assessment tool. For this, we compared different simulation tools for the Perdigão site in Portugal, in terms of accuracy and costs. In total five different simulation tools were compared. We found that with a high degree of automatisation and a high experience level of the modeller a cost effective and accurate prediction based on RANS could be achieved. LES simulations are still mainly reserved for academia.
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022, https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525, https://doi.org/10.5194/wes-7-1503-2022, https://doi.org/10.5194/wes-7-1503-2022, 2022
Short summary
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398, https://doi.org/10.5194/wes-7-1383-2022, https://doi.org/10.5194/wes-7-1383-2022, 2022
Short summary
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Alain Schubiger, Sarah Barber, and Henrik Nordborg
Wind Energ. Sci., 5, 1507–1519, https://doi.org/10.5194/wes-5-1507-2020, https://doi.org/10.5194/wes-5-1507-2020, 2020
Short summary
Short summary
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was implemented to calculate the wind field over the complex terrain of Bolund Hill. The results were compared to Reynolds-averaged Navier–Stokes and detached-eddy simulation (DES) using Ansys Fluent and field measurements. A comparison of the three methods' computational costs has shown that the LBM, even though not yet fully optimised, can perform 5 times faster than DES and lead to reasonably accurate results.
Sarah Barber, Alain Schubiger, Natalie Wagenbrenner, Nicolas Fatras, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-95, https://doi.org/10.5194/wes-2019-95, 2020
Publication in WES not foreseen
Short summary
Short summary
A new method for helping wind modellers choose the most cost-effective model for a given project is developed by applying six different Computational Fluid Dynamics tools to simulate the Bolund Hill experiment and studying appropriate comparison metrics in detail. The results show that this new method is successful, and that it is generally possible to apply it in order to choose the most appropriate model for a given project in advance.
Sarah Barber, Simon Boller, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-97, https://doi.org/10.5194/wes-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
The growing worldwide level of renewable power generation requires innovative solutions to maintain grid reliability and stability. In this work, twelve sites in Switzerland are chosen for a 100 % renewable energy microgrid feasibility study. For all of these sites, a combination of wind and PV performs consistently better than wind only and PV only. Five of the sites are found to be potentially economically viable, if investors would be prepared to make extra investments of 0.05–0.2 $/kWh.
Related subject area
Thematic area: Wind technologies | Topic: Airborne technology
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
System design and scaling trends for airborne wind energy
Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Flight guidance concept for the launching and landing phase of a flying wing used in an airborne wind energy system
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Dynamic analysis of the tensegrity structure of a rotary airborne wind energy machine
Wake characteristics of a balloon wind turbine and aerodynamic analysis of its balloon using a large eddy simulation and actuator disk model
Refining the airborne wind energy system power equations with a vortex wake model
Impact of wind profiles on ground-generation airborne wind energy system performance
Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method
Scaling effects of fixed-wing ground-generation airborne wind energy systems
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 9, 2261–2282, https://doi.org/10.5194/wes-9-2261-2024, https://doi.org/10.5194/wes-9-2261-2024, 2024
Short summary
Short summary
This article presents a tow test procedure for measuring the steering behaviour of tethered membrane wings. The experimental set-up includes a novel onboard sensor system for measuring the position and orientation of the towed wing, complemented by an attached low-cost multi-hole probe for measuring the relative flow velocity vector at the wing. The measured data (steering gain and dead time) can be used to improve kite models and simulate the operation of airborne wind energy systems.
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-161, https://doi.org/10.5194/wes-2024-161, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This paper presents a methodology for system design of airborne wind energy (AWE). A multi-disciplinary design, analysis, and optimization (MDAO) framework was developed, integrating power, energy production, and cost models for fixed-wing ground-generation (GG) AWE systems. Using the levelized cost of electricity (LCoE) as the design objective, we found that the optimal size of systems lies between the rated power of 100 kW and 1000 kW.
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024, https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
Short summary
This paper presents a fast cycle–power computation model for fixed-wing ground-generation airborne wind energy systems. It is suitable for sensitivity and scalability studies, which makes it a valuable tool for design and innovation trade-offs. It is also suitable for integration with cost models and systems engineering tools, enhancing its applicability in assessing the potential of airborne wind energy in the broader energy system.
Dominik Felix Duda, Hendrik Fuest, Tobias Islam, and Dieter Moormann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-90, https://doi.org/10.5194/wes-2024-90, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The use of flying wings in AWES is promising. This paper develops a guidance concept for launching and landing of such a flying wing AWES. The fundamental challenges are presented, and a suitable guidance concept identified. It is analyzed in terms of controllability at different wind speeds and guidance parameters. Based on this, a flight regime is identified and a controller is designed. Simulation results show that the control concept facilitates the desired launching and landing.
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024, https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Short summary
We present a novel two-point model of a kite with a suspended control unit to describe the characteristic swinging motion of this assembly during turning manoeuvres. Quasi-steady and dynamic model variants are combined with a discretised tether model, and simulation results are compared with measurement data of an instrumented kite system. By resolving the pitch of the kite, the model allows for computing the angle of attack, which is essential for estimating the generated aerodynamic forces.
Gonzalo Sánchez-Arriaga, Álvaro Cerrillo-Vacas, Daniel Unterweger, and Christof Beaupoil
Wind Energ. Sci., 9, 1273–1287, https://doi.org/10.5194/wes-9-1273-2024, https://doi.org/10.5194/wes-9-1273-2024, 2024
Short summary
Short summary
Rotary airborne wind energy (RAWE) machines transform wind energy into electric energy by transmitting the mechanical torque produced on a rotor to a generator on the ground by using its own structure, which is a spinning helix. Having a good understanding of the behavior of the helix is crucial in the design of RAWE machines. This work presents a theoretical model to simulate the helix’s dynamics and experimental tests to characterize it.
Aref Ehteshami and Mostafa Varmazyar
Wind Energ. Sci., 8, 1771–1793, https://doi.org/10.5194/wes-8-1771-2023, https://doi.org/10.5194/wes-8-1771-2023, 2023
Short summary
Short summary
In this paper, we numerically studied the wake characteristics and aerodynamics of a balloon wind turbine, an airborne system operating at altitudes of about 400–1000 m. The system can benefit from a stronger and steady wind flow at these altitudes. Results contribute to the wake structure and the magnitude of aerodynamic loads on the balloon in varying wind conditions at high altitudes. Findings are valuable in designing future optimized wind farms and control systems for balloon wind turbines.
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023, https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary
Short summary
The power equations of crosswind Ground-Gen and Fly-Gen airborne wind energy systems (AWESs) are refined to include the contribution from the aerodynamic wake. A novel power coefficient is defined by normalizing the aerodynamic power with the wind power passing through a disk with a radius equal to the AWES wingspan, allowing us to compare systems with different wingspans. Ground-Gen and Fly-Gen AWESs are compared in terms of their aerodynamic power potential.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Filippo Trevisi, Iván Castro-Fernández, Gregorio Pasquinelli, Carlo Emanuele Dionigi Riboldi, and Alessandro Croce
Wind Energ. Sci., 7, 2039–2058, https://doi.org/10.5194/wes-7-2039-2022, https://doi.org/10.5194/wes-7-2039-2022, 2022
Short summary
Short summary
The optimal control problem for the flight trajectories of Fly-Gen AWESs is expressed with a novel methodology in the frequency domain through a harmonic balance formulation. The solution gives the optimal trajectory and the optimal control inputs. Optimal trajectories have a circular shape squashed along the vertical direction, and the optimal control inputs can be modeled with only one or two harmonics. Analytical approximations for optimal trajectory characteristics are also given.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Cited articles
Argatov, I., Rautakorpi, P., and Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator, Renew. Energy, 34, 1525–1532, https://doi.org/10.1016/j.renene.2008.11.001, 2009. a
Bauer, F., Kennel, R. M., Hackle, C. M., Campagnolo, F., Patt, M., and Schmehl, R.: Drag power kite with very high lift coefficient, Renew. Energy, 118, 290–305, https://doi.org/10.1016/j.renene.2017.10.073, 2018. a, b
Bosman, R., Reid, V., Vlasblom, M., and Smeets, P.: Airborne wind energy
tethers with high-modulus polyethylene fibers, in: Airborne wind energy,
edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer, Berlin, Heidelberg, 563–585, https://doi.org/10.1007/978-3-642-39965-7_33, 2013. a
Cherubini, A.: Kite dynamics and wind energy harvesting, MS thesis,
Politecnico Di Milano, Milano, https://doi.org/10589/69561, 2012. a
Cherubini, A., Papini, A., Vertechy, R., and Fontana, M.: Airborne Wind Energy Systems: A review of the technologies, Renew. Sustain. Energ. Rev., 51, 1461–1476, https://doi.org/10.1016/j.rser.2015.07.053, 2015. a
Dorrell, J. and Lee, K.: The Cost of Wind: Negative Economic Effects of Global Wind Energy Development, Energies, 13, 3667, https://doi.org/10.3390/en13143667, 2020. a
Fagiano, L. and Milanese, M.: Airborne wind energy: an overview, in: 2012 American Control Conference (ACC), 27–29 June 2012, Montreal, QC, Canada, 3132–3143, https://doi.org/10.1109/ACC.2012.6314801, 2012. a, b, c
Folkersma, M., Schmehl, R., and Viré, A.: Boundary layer transition modeling on leading edge inflatable kite airfoils, Wind Energy, 22, 908–921,
https://doi.org/10.1002/we.2329, 2019. a
Fox, R. L.: Optimization Methods for Engineering Design, Addison-Wesley,
Reading, Massachusetts, https://doi.org/10.1002/nme.1620040315, 1971. a
García-Rodríguez, L. F. and Chacón Velasco, J. L.: Chicamocha
canyon wind energy potential and VAWT airfoil selection through CFD modeling,
Revista Facultad de Ingeniería Universidad de Antioquia, 56–66,
https://doi.org/10.17533/10.17533/udea.redin.20190512, 2020. a
Inman, M. and Davis, S. J.: Energy high in the sky: expert perspectives on
airborne wind energy systems, Near Zero, http://www.nearzero.org/wp/2012/09/11/energy-high-in-the-sky-expert-perspectives-on-airborne-wind
(last access: 3 August 2022), 2012. a
Jones, D. R., Schonlau, M., and Welch, W. J.: Efficient global optimization of expensive black-box functions, J. Global Optimiz., 13, 455–492,
https://doi.org/10.1023/A:1008306431147, 1998. a
Landman, D. and Britcher, C.: Experimental Optimization Methods for
Multi-Element Airfoils, in: Advanced Measurement and Ground Testing Conference, 17–20 June 1996, New Orleans, LA, USA, https://doi.org/10.2514/6.1996-2264, 1996.
a
Loyd, M. L.: Wind driven apparatus for power generation, US Patent 4,251,040,
1978. a
Loyd, M. L.: Crosswind kite power (for large-scale wind power production), J. Energy, 4, 106–111, https://doi.org/10.2514/3.48021, 1980. a, b
Lütsch, G.: Airborne Wind Energy Network HWN500–Shouldering R&D in
Co-Operations, TU Delft, Delft, https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09, 2015. a
Marvel, K., Kravitz, B., and Caldeira, K.: Geophysical limits to global wind
power, Nat. Clim. Change, 3, 118–121, https://doi.org/10.1038/nclimate1683, 2013. a
Narsipur, S. and Selig, M.: Computational analysis of multielement airfoils for wind turbines, MS thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign https://doi.org/2142/31157, 2012. a, b
Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A. M., and Rasheed, A.:
Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric
incompressible Navier–Stokes solver with the Spalart–Allmaras turbulence
model, Comput. Meth. Appl. Mech. Eng., 290, 183–208, https://doi.org/10.1016/j.cma.2015.02.030, 2015. a
OpenFOAM: About OpenFOAM, https://www.openfoam.com/, last access: 3 August 2022. a
Pas, S.: The influence of y+ in wall functions applied in ship viscous flows, MARIN Internship Report, February 2016
https://essay.utwente.nl/69529/ (last access: 3 August 2022), 2016. a
Pomeroy, B. W.: Wake bursting: A computational and experimental investigation
for application to high-lift multielement airfoil design, PhD thesis,
University of Illinois at Urbana-Champaign, Urbana-Champaign, 2016. a
Ribeiro, A. F. P., Awruch, A. M., and Gomes, H. M.: An airfoil optimization
technique for wind turbines, Appl. Math. Model., 36, 4898–4907,
https://doi.org/10.1016/j.apm.2011.12.026, 2012.
a
Ruder, S.: An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747, 2016. a
Schneiderheinze, T., Heinze, T., and Michael, M.: High performance ropes and
drums in airborne wind energy systems, in: Airborne Wind Energy Conference, 15–16 June 2015, Delft, p. 72,
http://resolver.tudelft.nl/uuid:9030b06e-ff98-4d4c-a61e-839f7062e8a9 (last access: 3 August 2022), 2015. a
Sóbester, A. and Forrester, A. I.: Aircraft aerodynamic design: geometry
and optimization, John Wiley & Sons, ISBN 978-0-470-66257-1, 2014. a
Vander Lind, D.: Analysis and flight test validation of high performance
airbornewind turbines, in: Airborne wind energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer, Berlin, Heidelberg, 473–490, https://doi.org/10.1007/978-3-642-39965-7_28, 2013. a, b
Vander Lind, D.: Kite configuration and flight strategy for flight in high wind speeds, US Patent 8,922,046, 2014. a
van der Vlugt, R., Bley, A., Noom, M., and Schmehl, R.: Quasi-steady model of a pumping kite power system, Renew. Energy, 131, 83–99,
https://doi.org/10.1016/j.renene.2018.07.023, 2019. a
Vermillion, C., Cobb, M., Fagiano, L., Leuthold, R., Diehl, M., Smith, R. S.,
Wood, T. A., Rapp, S., Schmehl, R., Olinger, D., and Demetriou, M.: Eectricity in the air: Insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems, Annu. Rev. Control, 52, 330–357, https://doi.org/10.1016/j.arcontrol.2021.03.002, 2021. a, b
Vimal Chand, D., Sriram, R., and Udaya Kumar, D.: Aerodynamic analysis of multi element airfoil, in: International Journal of Scientific and Research Publications, Vol. 6, https://www.ijsrp.org/research-paper-0716/ijsrp-p5548.pdf (last access: 3 August 2022), 2016. a
Vinh, H., van Dam, C. P., Yen, D., and Pepper, R. S.: Drag prediction
algorithms for Navier–Stokes solutions about airfoils, in: 13th Applied Aerodynamics Conference, 19–22 June 1995, San Diego, CA, USA, p. 1788, https://doi.org/10.2514/6.1995-1788, 1995. a
Zhang, Z., De Gaspari, A., Ricci, S., Song, C., and Yang, C.: Gradient-Based
Aerodynamic Optimization of an Airfoil with Morphing Leading and Trailing
Edges, Appl. Sci., 11, 1929, https://doi.org/10.3390/app11041929, 2021. a
Short summary
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element airfoil using numerical flow simulations. The results show that these types of airfoil are very suitable for an upcoming wind energy generation concept. The parametric study of the wing led to a significant improvement of up to 46.6 % compared to the baseline design. The increased power output of the energy generation concept contributes substantially to today's energy transition.
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element...
Altmetrics
Final-revised paper
Preprint