Articles | Volume 7, issue 4
Wind Energ. Sci., 7, 1753–1769, 2022
https://doi.org/10.5194/wes-7-1753-2022
Wind Energ. Sci., 7, 1753–1769, 2022
https://doi.org/10.5194/wes-7-1753-2022
Research article
24 Aug 2022
Research article | 24 Aug 2022

Demonstration of a fault impact reduction control module for wind turbines

Benjamin Anderson and Edward Baring-Gould

Related authors

Comparison of Free Vortex Wake and BEM Structural Results Against Large Eddy Simulations Results for Highly Flexible Turbines Under Challenging Inflow Conditions
Kelsey Shaler, Benjamin Anderson, Luis A. Martinez-Tossas, Emmanuel Branlard, and Nick Johnson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-130,https://doi.org/10.5194/wes-2021-130, 2022
Preprint under review for WES
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind turbine control
FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022,https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Lidar-assisted model predictive control of wind turbine fatigue via online rainflow counting considering stress history
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625, https://doi.org/10.5194/wes-7-1605-2022,https://doi.org/10.5194/wes-7-1605-2022, 2022
Short summary

Cited articles

Anderson, B.: Simulink model of CART wind turbine with Fault Impact Reduction Control Module, Zenodo [data set], https://doi.org/10.5281/zenodo.5604464, 2021a. a
Anderson, B.: Simulink model of CART wind turbine with Fault Impact Reduction Control Module (2.0.4), Zenodo [code, data set], https://doi.org/10.5281/zenodo.6954058, 2021b. a
Fingersh, L. J. and Johnson, K.: Controls Advanced Research Turbine (CART) Commissioning and Baseline Data Collection, Tech. Rep., NREL/TP-500-32879, 15002211, https://doi.org/10.2172/15002211, 2002. a
García Márquez, F. P., Tobias, A. M., Pinar Pérez, J. M., and Papaelias, M.: Condition monitoring of wind turbines: Techniques and methods, Renew. Energ., 46, 169–178, https://doi.org/10.1016/j.renene.2012.03.003, 2012. a
Habibi, H., Howard, I., and Simani, S.: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review, Renew. Energ. 135, 877–896, https://doi.org/10.1016/j.renene.2018.12.066, 2019. a, b, c, d, e
Download
Short summary
Our article proposes an easy-to-integrate wind turbine control module which mitigates wind turbine fault conditions and sends predictive information to the grid operator, all while maximizing power production. This gives the grid operator more time to react to faults with its dispatch decisions, easing the transition between different generators. This study aims to illustrate the controller’s functionality under various types of faults and highlight potential wind turbine and grid benefits.