Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-1869-2022
https://doi.org/10.5194/wes-7-1869-2022
Research article
 | 
13 Sep 2022
Research article |  | 13 Sep 2022

Sensitivity analysis of mesoscale simulations to physics parameterizations over the Belgian North Sea using Weather Research and Forecasting – Advanced Research WRF (WRF-ARW)

Adithya Vemuri, Sophia Buckingham, Wim Munters, Jan Helsen, and Jeroen van Beeck

Related authors

Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Preprint under review for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary
Assessing the impact of wind profiles at offshore wind farm sites for field data-enabled design
Rebeca Marini, Konstantinos Vratsinis, Kayacan Kestel, Jonathan Sterckx, Jens Matthys, Pieter-Jan Daems, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-9,https://doi.org/10.5194/wes-2025-9, 2025
Preprint under review for WES
Short summary
Improving wind and power predictions via four-dimensional data assimilation in the WRF model: case study of storms in February 2022 at Belgian offshore wind farms
Tsvetelina Ivanova, Sara Porchetta, Sophia Buckingham, Gertjan Glabeke, Jeroen van Beeck, and Wim Munters
Wind Energ. Sci., 10, 245–268, https://doi.org/10.5194/wes-10-245-2025,https://doi.org/10.5194/wes-10-245-2025, 2025
Short summary
Leveraging Signal Processing and Machine Learning for Automated Fault Detection in Wind Turbine Drivetrains
Faras Jamil, Cédric Peeters, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-114,https://doi.org/10.5194/wes-2024-114, 2024
Revised manuscript under review for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Linking large-scale weather patterns to observed and modeled turbine hub-height winds offshore of the US West Coast
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025,https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Improving wind and power predictions via four-dimensional data assimilation in the WRF model: case study of storms in February 2022 at Belgian offshore wind farms
Tsvetelina Ivanova, Sara Porchetta, Sophia Buckingham, Gertjan Glabeke, Jeroen van Beeck, and Wim Munters
Wind Energ. Sci., 10, 245–268, https://doi.org/10.5194/wes-10-245-2025,https://doi.org/10.5194/wes-10-245-2025, 2025
Short summary
Investigating the Relationship between Simulation Parameters and Flow Variables in Simulating Atmospheric Gravity Waves for Wind Energy Applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-138,https://doi.org/10.5194/wes-2024-138, 2024
Revised manuscript accepted for WES
Short summary
Estimating the technical wind energy potential of Kansas that incorporates the effect of regional wind resource depletion by wind turbines
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024,https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Analyzing the performance of vertical wind profilers in rain events
Adriel J. Carvalho, Francisco Albuquerque Leite Neto, and Denisson Q. Oliveira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-132,https://doi.org/10.5194/wes-2024-132, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

AbuGazia, M., El Damatty, A. A., Dai, K., Lu, W., and Ibrahim, A.: Numerical model for analysis of wind turbines under tornadoes, Eng. Struct., 223, 111157, https://doi.org/10.1016/j.engstruct.2020.111157, 2020. a
Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: WRF-simulated low-level jets over Iowa: characterization and sensitivity studies, Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, 2021. a
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011. a
Bakhshi, R. and Sandborn, P.: The effect of yaw error on the reliability of wind turbine blades, in: Energy Sustainability, vol. 50220, American Society of Mechanical Engineers, p. V001T14A001, https://doi.org/10.1115/ES2016-59151, 2016. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. a
Download
Short summary
The sensitivity of the WRF mesoscale modeling framework in accurately representing and...
Share
Altmetrics
Final-revised paper
Preprint