Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-1869-2022
https://doi.org/10.5194/wes-7-1869-2022
Research article
 | 
13 Sep 2022
Research article |  | 13 Sep 2022

Sensitivity analysis of mesoscale simulations to physics parameterizations over the Belgian North Sea using Weather Research and Forecasting – Advanced Research WRF (WRF-ARW)

Adithya Vemuri, Sophia Buckingham, Wim Munters, Jan Helsen, and Jeroen van Beeck

Related authors

Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data
Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 1137–1152, https://doi.org/10.5194/wes-10-1137-2025,https://doi.org/10.5194/wes-10-1137-2025, 2025
Short summary
Scalable SCADA-driven Failure Prediction for Offshore Wind Turbines Using Autoencoder-Based NBM and Fleet-Median Filtering
Ivo Vervlimmeren, Xavier Chesterman, Timothy Verstraeten, Ann Nowé, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-49,https://doi.org/10.5194/wes-2025-49, 2025
Revised manuscript under review for WES
Short summary
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Preprint under review for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind
Sarah McElman, Amrit Shankar Verma, and Andrew Goupee
Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025,https://doi.org/10.5194/wes-10-1529-2025, 2025
Short summary
Estimating long-term annual energy production from shorter-time-series data: methods and verification with a 10-year large-eddy simulation of a large offshore wind farm
Bernard Postema, Remco A. Verzijlbergh, Pim van Dorp, Peter Baas, and Harm J. J. Jonker
Wind Energ. Sci., 10, 1471–1484, https://doi.org/10.5194/wes-10-1471-2025,https://doi.org/10.5194/wes-10-1471-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary
Brief communication: A note on the variance of wind speed and turbulence intensity
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025,https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary

Cited articles

AbuGazia, M., El Damatty, A. A., Dai, K., Lu, W., and Ibrahim, A.: Numerical model for analysis of wind turbines under tornadoes, Eng. Struct., 223, 111157, https://doi.org/10.1016/j.engstruct.2020.111157, 2020. a
Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: WRF-simulated low-level jets over Iowa: characterization and sensitivity studies, Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, 2021. a
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011. a
Bakhshi, R. and Sandborn, P.: The effect of yaw error on the reliability of wind turbine blades, in: Energy Sustainability, vol. 50220, American Society of Mechanical Engineers, p. V001T14A001, https://doi.org/10.1115/ES2016-59151, 2016. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. a
Download
Short summary
The sensitivity of the WRF mesoscale modeling framework in accurately representing and predicting wind-farm-level environmental variables for three extreme weather events over the Belgian North Sea is investigated in this study. The overall results indicate highly sensitive simulation results to the type and combination of physics parameterizations and the type of the weather phenomena, with indications that scale-aware physics parameterizations better reproduce wind-related variables.
Share
Altmetrics
Final-revised paper
Preprint