Articles | Volume 8, issue 9
https://doi.org/10.5194/wes-8-1453-2023
https://doi.org/10.5194/wes-8-1453-2023
Research article
 | 
19 Sep 2023
Research article |  | 19 Sep 2023

A neighborhood search integer programming approach for wind farm layout optimization

Juan-Andrés Pérez-Rúa, Mathias Stolpe, and Nicolaos Antonio Cutululis

Related authors

A framework for simultaneous design of wind turbines and cable layout in offshore wind
Juan-Andrés Pérez-Rúa and Nicolaos Antonio Cutululis
Wind Energ. Sci., 7, 925–942, https://doi.org/10.5194/wes-7-925-2022,https://doi.org/10.5194/wes-7-925-2022, 2022
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024,https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Identification of electro-mechanical interactions in wind turbines
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024,https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
A sensitivity-based estimation method for investigating control co-design relevance
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024,https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Validation of aeroelastic dynamic model of active trailing edge flap system tested on a 4.3 MW wind turbine
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024,https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Effect of Blade Inclination Angle for Straight Bladed Vertical Axis Wind Turbines
Laurence Boyd Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-42,https://doi.org/10.5194/wes-2024-42, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Archer, R., Nates, G., Donovan, S., and Waterer, H.: Wind turbine interference in a wind farm layout optimization mixed integer linear programming model, Wind Engergy, 35, 165–175, https://doi.org/10.1260/0309-524X.35.2.16, 2011. a
Baker, N., Stanley, A., Thomas, J., Ning, A., and Dykes, K.: Best practices for wake model and optimization algorithm selection in wind farm layout optimization, in: AIAA Scitech 2019 Forum, 0540, https://doi.org/10.2514/6.2019-0540, 2019. a, b, c, d, e, f, g, h, i, j
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Cazzaro, D. and Pisinger, D.: Variable neighborhood search for large offshore wind farm layout optimization, Comput. Oper. Res., 138, 105588, https://doi.org/10.1016/j.cor.2021.105588, 2022. a
Cazzaro, D., Koza, D. F., and Pisinger, D.: Combined layout and cable optimization of offshore wind farms, Eur. J. Oper. Res., 311, 301–315, https://doi.org/10.1016/j.ejor.2023.04.046, 2023. a
Download
Short summary
With the challenges of ensuring secure energy supplies and meeting climate targets, wind energy is on course to become the cornerstone of decarbonized energy systems. This work proposes a new method to optimize wind farms by means of smartly placing wind turbines within a given project area, leading to more green-energy generation. This method performs satisfactorily compared to state-of-the-art approaches in terms of the resultant annual energy production and other high-level metrics.
Altmetrics
Final-revised paper
Preprint