Articles | Volume 8, issue 4
https://doi.org/10.5194/wes-8-515-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-515-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
Tamino Wetz
CORRESPONDING AUTHOR
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany
Norman Wildmann
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany
Related authors
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024, https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
Linus Wrba, Antonia Englberger, Andreas Dörnbrack, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-12, https://doi.org/10.5194/wes-2024-12, 2024
Revised manuscript under review for WES
Short summary
Short summary
It is crucial to understand the loads and power production of wind turbines under different atmospheric situations (e.g. night and day changes). Computational simulations are a widely used tool to get more knowledge of the performance and the wake of wind turbines. In this study realistic velocity profiles of the atmosphere are used as input for simulations so that these simulations become more realistic. The generated realistic flow is used as inflow for wind-turbine simulations.
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023, https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Short summary
Large cities emit greenhouse gases which contribute to global warming. In this study, we measured the release of one important green house gas, methane, in Hamburg. Multiple sources that contribute to methane emissions were located and quantified. Methane sources were found to be mainly caused by human activity (e.g., by release from oil and gas refineries). Moreover, potential natural sources have been located, such as the Elbe River and lakes.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022, https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michał Gałkowski, Justyna Swolkień, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys., 21, 17345–17371, https://doi.org/10.5194/acp-21-17345-2021, https://doi.org/10.5194/acp-21-17345-2021, 2021
Short summary
Short summary
Quantification of anthropogenic CH4 emissions remains challenging, but it is essential for near-term climate mitigation strategies. We use airborne remote sensing observations to assess bottom-up estimates of coal mining emissions from one of Europe's largest CH4 emission hot spots located in Poland. The analysis reveals that emissions from small groups of shafts can be disentangled, but caution is advised when comparing observations to commonly reported annual emissions.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys., 21, 8791–8807, https://doi.org/10.5194/acp-21-8791-2021, https://doi.org/10.5194/acp-21-8791-2021, 2021
Short summary
Short summary
Abundant mining and industrial activities in the Upper Silesian Coal Basin lead to large emissions of the potent greenhouse gas methane. This study quantifies these emissions with continuous, high-precision airborne measurements and dispersion modeling. Our emission estimates are in line with values reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) but significantly lower than values reported in the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2).
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695, https://doi.org/10.5194/acp-20-12675-2020, https://doi.org/10.5194/acp-20-12675-2020, 2020
Short summary
Short summary
A severe reduction of greenhouse gas emissions is necessary to fulfill the Paris Agreement. We use aircraft- and ground-based in situ observations of trace gases and wind speed from two flights over the Upper Silesian Coal Basin, Poland, for independent emission estimation. The derived methane emission estimates are within the range of emission inventories, carbon dioxide estimates are in the lower range and carbon monoxide emission estimates are slightly higher than emission inventory values.
Norman Wildmann, Eileen Päschke, Anke Roiger, and Christian Mallaun
Atmos. Meas. Tech., 13, 4141–4158, https://doi.org/10.5194/amt-13-4141-2020, https://doi.org/10.5194/amt-13-4141-2020, 2020
Tyler M. Bell, Petra Klein, Norman Wildmann, and Robert Menke
Atmos. Meas. Tech., 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020, https://doi.org/10.5194/amt-13-1357-2020, 2020
Short summary
Short summary
This study investigates the utility of using multi-Doppler retrievals during the Perdigão 2017 campaign. By combining scans from the multitude of Doppler lidars, it was possible to derive virtual towers that greatly extend the range of traditional in situ meteorological towers. Uncertainties from the measurements are analyzed and discussed. Despite multiple sources of error, it was found that the virtual towers are useful for analyzing the complex flows observed during the campaign.
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019, https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Short summary
Turbulence is the variation of wind velocity on short timescales. In this study we introduce a new method to measure turbulence in a two-dimensionial plane with lidar instruments. The method allows for the detection and quantification of subareas of distinct turbulence conditions in the observed plane. We compare the results to point and profile measurements with more established instruments. It is shown that turbulence below low-level jets and in wind turbine wakes can be investigated this way.
Johannes Wagner, Norman Wildmann, and Thomas Gerz
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-77, https://doi.org/10.5194/wes-2019-77, 2019
Preprint retracted
Short summary
Short summary
The impact of a forest parameterization on the simulation of boundary layer flows over complex terrain is investigated. Short- and long-term simulations are run for 12 hours and 1.5 months, respectively, with and without forest parameterization and the results are compared to lidar and meteorological tower observations. The test cases are based on the Perdigao 2017 campaign.
Andreas Luther, Ralph Kleinschek, Leon Scheidweiler, Sara Defratyka, Mila Stanisavljevic, Andreas Forstmaier, Alexandru Dandocsi, Sebastian Wolff, Darko Dubravica, Norman Wildmann, Julian Kostinek, Patrick Jöckel, Anna-Leah Nickl, Theresa Klausner, Frank Hase, Matthias Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Andreas Fix, Anke Roiger, and André Butz
Atmos. Meas. Tech., 12, 5217–5230, https://doi.org/10.5194/amt-12-5217-2019, https://doi.org/10.5194/amt-12-5217-2019, 2019
Short summary
Short summary
Methane ventilated from hard coal mines in the Upper Silesian
Coal Basin in Poland is measured with a mobile Fourier transform spectrometer EM27/SUN. The instrument was mounted on a truck driving in stop-and-go patterns downwind of the methane sources. The emissions are estimated with the cross-sectional flux method. Calculated emissions are in broad agreement with the E-PRTR database. Wind-related errors on the methane estimates dominate the error budget and typically amount to 20 %.
Johannes Wagner, Thomas Gerz, Norman Wildmann, and Kira Gramitzky
Atmos. Chem. Phys., 19, 1129–1146, https://doi.org/10.5194/acp-19-1129-2019, https://doi.org/10.5194/acp-19-1129-2019, 2019
Short summary
Short summary
Long-term WRF-LES simulations were performed with a horizontal resolution of 200 m for a period of 49 days during the Perdigão campaign. Simulation results were used to characterize the meteorological conditions and to analyse characteristic flow patterns. It could be shown that thermally driven flows including low-level jets frequently occurred during the observation period. Model results were in very good agreement with observations in spite of the long simulation time.
Norman Wildmann, Nikola Vasiljevic, and Thomas Gerz
Atmos. Meas. Tech., 11, 3801–3814, https://doi.org/10.5194/amt-11-3801-2018, https://doi.org/10.5194/amt-11-3801-2018, 2018
Short summary
Short summary
Wind turbines extract energy from the flow which manifests in a region of lower wind speeds and increased turbulence downstream of the rotor, the so-called wake. Understanding the characteristics of the wake is a key challenge for wind-energy research. A new strategy for measuring the wind in the wake with three synchronized lidar instruments is presented. The measurement points are automatically adapted to the prevailing wind direction to achieve continuous monitoring of wake properties.
B. Altstädter, A. Platis, B. Wehner, A. Scholtz, N. Wildmann, M. Hermann, R. Käthner, H. Baars, J. Bange, and A. Lampert
Atmos. Meas. Tech., 8, 1627–1639, https://doi.org/10.5194/amt-8-1627-2015, https://doi.org/10.5194/amt-8-1627-2015, 2015
Short summary
Short summary
The unmanned research aircraft Carolo P360 "ALADINA" is a flexible tool for investigating the horizontal and vertical distribution of freshly formed particles in the atmospheric boundary layer (ABL) combined with measurements of turbulent fluxes derived by fast meteorological sensors. First results of a feasibility study show, among others, events of particle bursts in an internal
layer of the ABL. Comparisons with ground-based instruments and a lidar present the reliability of the new system.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
N. Wildmann, F. Kaufmann, and J. Bange
Atmos. Meas. Tech., 7, 3059–3069, https://doi.org/10.5194/amt-7-3059-2014, https://doi.org/10.5194/amt-7-3059-2014, 2014
N. Wildmann, M. Hofsäß, F. Weimer, A. Joos, and J. Bange
Adv. Sci. Res., 11, 55–61, https://doi.org/10.5194/asr-11-55-2014, https://doi.org/10.5194/asr-11-55-2014, 2014
N. Wildmann, S. Ravi, and J. Bange
Atmos. Meas. Tech., 7, 1027–1041, https://doi.org/10.5194/amt-7-1027-2014, https://doi.org/10.5194/amt-7-1027-2014, 2014
N. Wildmann, M. Mauz, and J. Bange
Atmos. Meas. Tech., 6, 2101–2113, https://doi.org/10.5194/amt-6-2101-2013, https://doi.org/10.5194/amt-6-2101-2013, 2013
Related subject area
Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
An actuator sector model for wind power applications: a parametric study
Wind tunnel investigations of an individual pitch control strategy for wind farm power optimization
The near-wake development of a wind turbine operating in stalled conditions – Part 1: Assessment of numerical models
Data-driven optimisation of wind farm layout and wake steering with large-eddy simulations
Floating wind turbine motion signature in the far-wake spectral content – a wind tunnel experiment
Breakdown of the velocity and turbulence in the wake of a wind turbine – Part 1: Large-eddy-simulation study
Breakdown of the velocity and turbulence in the wake of a wind turbine – Part 2: Analytical modelling
Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects
A method to correct for the effect of blockage and wakes on power performance measurements
Vortex model of the aerodynamic wake of airborne wind energy systems
A new RANS-based wind farm parameterization and inflow model for wind farm cluster modeling
Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation
The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data
Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model
Actuator line model using simplified force calculation methods
Brief communication: A clarification of wake recovery mechanisms
Predictive and stochastic reduced-order modeling of wind turbine wake dynamics
Wind turbine wake simulation with explicit algebraic Reynolds stress modeling
Including realistic upper atmospheres in a wind-farm gravity-wave model
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024, https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Short summary
Wind farm yield assessment often relies on analytical wake models. Calibrating these models can be challenging due to the stochastic nature of wind. We developed a calibration framework that performs a multi-phase optimization on the tuning parameters using time series SCADA data. This yields a parameter distribution that more accurately reflects reality than a single value. Results revealed notable variation in resultant parameter values, influenced by nearby wind farms and coastal effects.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024, https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary
Short summary
The dynamic wake meandering model (DWMM) assumes that wind turbine wakes are transported like a passive tracer by the large-scale turbulence of the atmospheric boundary layer. We show that both the downstream transport and the lateral transport of the wake have differences from the passive tracer assumption. We then propose to include the turbulent Schmidt number into the DWMM to account for the less efficient transport of momentum and show that it improves the quality of the model predictions.
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024, https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary
Short summary
This paper has put forward a set of recommendations regarding the actuator sector model implementation details to improve the capability of the model to reproduce similar results compared to those obtained by an actuator line model, which is one of the most common ways used for numerical simulations of wind farms, while providing significant computational savings. This includes among others the velocity sampling method and a correction of the sampled velocities to calculate the blade forces.
Franz V. Mühle, Florian M. Heckmeier, Filippo Campagnolo, and Christian Breitsamter
Wind Energ. Sci., 9, 1251–1271, https://doi.org/10.5194/wes-9-1251-2024, https://doi.org/10.5194/wes-9-1251-2024, 2024
Short summary
Short summary
Wind turbines influence each other, and these wake effects limit the power production of downstream turbines. Controlling turbines collectively and not individually can limit such effects. We experimentally investigate a control strategy increasing mixing in the wake. We want to see the potential of this so-called Helix control for power optimization and understand the flow physics. Our study shows that the control technique leads to clearly faster wake recovery and thus higher power production.
Pascal Weihing, Marion Cormier, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 9, 933–962, https://doi.org/10.5194/wes-9-933-2024, https://doi.org/10.5194/wes-9-933-2024, 2024
Short summary
Short summary
This study evaluates different approaches to simulate the near-wake flow of a wind turbine. The test case is in off-design conditions of the wind turbine, where the flow is separated from the blades and therefore very difficult to predict. The evaluation of simulation techniques is key to understand their limitations and to deepen the understanding of the near-wake physics. This knowledge can help to derive new wind farm design methods for yield-optimized farm layouts.
Nikolaos Bempedelis, Filippo Gori, Andrew Wynn, Sylvain Laizet, and Luca Magri
Wind Energ. Sci., 9, 869–882, https://doi.org/10.5194/wes-9-869-2024, https://doi.org/10.5194/wes-9-869-2024, 2024
Short summary
Short summary
This paper proposes a computational method to maximise the power production of wind farms through two strategies: layout optimisation and yaw angle optimisation. The proposed method relies on high-fidelity computational modelling of wind farm flows and is shown to be able to effectively maximise wind farm power production. Performance improvements relative to conventional optimisation strategies based on low-fidelity models can be attained, particularly in scenarios of increased flow complexity.
Benyamin Schliffke, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 9, 519–532, https://doi.org/10.5194/wes-9-519-2024, https://doi.org/10.5194/wes-9-519-2024, 2024
Short summary
Short summary
This paper studies the consequences of floater motions for the wake properties of a floating wind turbine. Since wake interactions are responsible for power production loss in wind farms, it is important that we know whether the tools that are used to predict this production loss need to be upgraded to take into account these aspects. Our wind tunnel study shows that the signature of harmonic floating motions can be observed in the far wake of a wind turbine, when motions have strong amplitudes.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 97–117, https://doi.org/10.5194/wes-9-97-2024, https://doi.org/10.5194/wes-9-97-2024, 2024
Short summary
Short summary
Wind turbine wakes affect the production and lifecycle of downstream turbines. They can be predicted with the dynamic wake meandering (DWM) method. In this paper, the authors break down the velocity and turbulence in the wake of a wind turbine into several terms. They show that it is implicitly assumed in the DWM that some of these terms are neglected. With high-fidelity simulations, it is shown that this can lead to some errors, in particular for the maximum turbulence added by the wake.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 119–139, https://doi.org/10.5194/wes-9-119-2024, https://doi.org/10.5194/wes-9-119-2024, 2024
Short summary
Short summary
Analytical models allow us to quickly compute the decreased power output and lifetime induced by wakes in a wind farm. This is achieved by evaluating the modified velocity and turbulence in the wake. In this work, we present a new model based on the velocity and turbulence breakdowns presented in Part 1. This new model is physically based, allows us to compute the whole turbulence profile (rather than the maximum value) and is built to take atmospheric stability into account.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Alessandro Sebastiani, James Bleeg, and Alfredo Peña
Wind Energ. Sci., 8, 1795–1808, https://doi.org/10.5194/wes-8-1795-2023, https://doi.org/10.5194/wes-8-1795-2023, 2023
Short summary
Short summary
The power curve of a wind turbine indicates the turbine power output in relation to the wind speed. Therefore, power curves are critically important to estimate the production of future wind farms as well as to assess whether operating wind farms are functioning correctly. Since power curves are often measured in wind farms, they might be affected by the interactions between the turbines. We show that these effects are not negligible and present a method to correct for them.
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 999–1016, https://doi.org/10.5194/wes-8-999-2023, https://doi.org/10.5194/wes-8-999-2023, 2023
Short summary
Short summary
Modeling the aerodynamic wake of airborne wind energy systems (AWESs) is crucial to properly estimating power production and to designing such systems. The velocities induced at the AWES from its own wake are studied with a model for the near wake and one for the far wake, using vortex methods. The model is validated with the lifting-line free-vortex wake method implemented in QBlade.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Peter Baas, Remco Verzijlbergh, Pim van Dorp, and Harm Jonker
Wind Energ. Sci., 8, 787–805, https://doi.org/10.5194/wes-8-787-2023, https://doi.org/10.5194/wes-8-787-2023, 2023
Short summary
Short summary
This work studies the energy production and wake losses of large offshore wind farms with a large-eddy simulation model. Therefore, 1 year of actual weather has been simulated for a suite of hypothetical 4 GW wind farm scenarios. The results suggest that production numbers increase significantly when the rated power of the individual turbines is larger while keeping the total installed capacity the same. Also, a clear impact of atmospheric stability on the energy production is found.
Robert Braunbehrens, Andreas Vad, and Carlo L. Bottasso
Wind Energ. Sci., 8, 691–723, https://doi.org/10.5194/wes-8-691-2023, https://doi.org/10.5194/wes-8-691-2023, 2023
Short summary
Short summary
The paper presents a new method in which wind turbines in a wind farm act as local sensors, in this way detecting the flow that develops within the power plant. Through this technique, we are able to identify effects on the flow generated by the plant itself and by the orography of the terrain. The new method not only delivers a flow model of much improved quality but can also help in understanding phenomena that drive the farm performance.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Gonzalo Pablo Navarro Diaz, Alejandro Daniel Otero, Henrik Asmuth, Jens Nørkær Sørensen, and Stefan Ivanell
Wind Energ. Sci., 8, 363–382, https://doi.org/10.5194/wes-8-363-2023, https://doi.org/10.5194/wes-8-363-2023, 2023
Short summary
Short summary
In this paper, the capacity to simulate transient wind turbine wake interaction problems using limited wind turbine data has been extended. The key novelty is the creation of two new variants of the actuator line technique in which the rotor blade forces are computed locally using generic load data. The analysis covers a partial wake interaction case between two wind turbines for a uniform laminar inflow and for a turbulent neutral atmospheric boundary layer inflow.
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023, https://doi.org/10.5194/wes-8-247-2023, 2023
Short summary
Short summary
Understanding wind turbine wake recovery is important to mitigate energy losses in wind farms. Wake recovery is often assumed or explained to be dependent on the first-order derivative of velocity. In this work we show that wind turbine wakes recover mainly due to the second-order derivative of the velocity, which transport momentum from the freestream towards the wake center. The wake recovery mechanisms and results of a high-fidelity numerical simulation are illustrated using a simple model.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022, https://doi.org/10.5194/wes-7-1975-2022, 2022
Short summary
Short summary
Wind turbine wakes in the neutral atmospheric surface layer are simulated with Reynolds-averaged Navier–Stokes (RANS) using an explicit algebraic Reynolds stress model. Contrary to standard two-equation turbulence models, it can predict turbulence anisotropy and complex physical phenomena like secondary motions. For the cases considered, it improves Reynolds stress, turbulence intensity, and velocity deficit predictions, although a more top-hat-shaped profile is observed for the latter.
Koen Devesse, Luca Lanzilao, Sebastiaan Jamaer, Nicole van Lipzig, and Johan Meyers
Wind Energ. Sci., 7, 1367–1382, https://doi.org/10.5194/wes-7-1367-2022, https://doi.org/10.5194/wes-7-1367-2022, 2022
Short summary
Short summary
Recent research suggests that offshore wind farms might form such a large obstacle to the wind that it already decelerates before reaching the first turbines. Part of this phenomenon could be explained by gravity waves. Research on these gravity waves triggered by mountains and hills has found that variations in the atmospheric state with altitude can have a large effect on how they behave. This paper is the first to take the impact of those vertical variations into account for wind farms.
Cited articles
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on
wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a
Abraham, A., Dasari, T., and Hong, J.: Effect of turbine nacelle and tower on
the near wake of a utility-scale wind turbine, J. Wind Eng. Indust. Aerodynam., 193, 103981, https://doi.org/10.1016/j.jweia.2019.103981, 2019. a
Abraham, A., Martínez-Tossas, L. A., and Hong, J.: Mechanisms of dynamic
near-wake modulation of a utility-scale wind turbine, J. Fluid Mech., 926,
A29, https://doi.org/10.1017/jfm.2021.737, 2021. a, b
Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake
Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Tech., 31, 1529–1539, https://doi.org/10.1175/jtech-d-13-00218.1, 2014. a
Alaoui-Sosse, S., Durand, P., and Médina, P.: In Situ Observations of
Wind Turbines Wakes with Unmanned Aerial Vehicle BOREAL within the MOMEMTA Project, Atmosphere, 13, 775, https://doi.org/10.3390/atmos13050775, 2022. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of
wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541,
https://doi.org/10.1017/jfm.2016.595, 2016. a, b, c
Bastankhah, M. and Porté-Agel, F.: Wind tunnel study of the wind turbine
interaction with a boundary-layer flow: Upwind region, turbine performance,
and wake region, Phys. Fluids, 29, 065105, https://doi.org/10.1063/1.4984078, 2017. a, b, c, d
Brugger, P., Debnath, M., Scholbrock, A., Fleming, P., Moriarty, P., Simley,
E., Jager, D., Roadman, J., Murphy, M., Zong, H., and Porté-Agel, F.:
Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models, Wind Energ. Sci., 5, 1253–1272,
https://doi.org/10.5194/wes-5-1253-2020, 2020. a
Crespo, A., Hernández, J., and Frandsen, S.: Survey of modelling methods for wind turbine wakes and wind farms, Wind Energy, 2, 1–24,
https://doi.org/10.1002/(sici)1099-1824(199901/03)2:1<1::aid-we16>3.0.co;2-7, 1999. a
Dasari, T., Wu, Y., Liu, Y., and Hong, J.: Near-wake behaviour of a
utility-scale wind turbine, J. Fluid Mech., 859, 204–246,
https://doi.org/10.1017/jfm.2018.779, 2018. a
Doubrawa, P., Quon, E. W., Martinez-Tossas, L. A., Shaler, K., Debnath, M.,
Hamilton, N., Herges, T. G., Maniaci, D., Kelley, C. L., Hsieh, A. S.,
Blaylock, M. L., Laan, P., Andersen, S. J., Krueger, S., Cathelain, M.,
Schlez, W., Jonkman, J., Branlard, E., Steinfeld, G., Schmidt, S., Blondel,
F., Lukassen, L. J., and Moriarty, P.: Multimodel validation of single wakes
in neutral and stratified atmospheric conditions, Wind Energy, 23, 2027–2055, https://doi.org/10.1002/we.2543, 2020. a
Englberger, A., Dörnbrack, A., and Lundquist, J. K.: Does the rotational
direction of a wind turbine impact the wake in a stably stratified
atmospheric boundary layer?, Wind Energ. Sci., 5, 1359–1374,
https://doi.org/10.5194/wes-5-1359-2020, 2020. a
Fuertes, F. C., Markfort, C., and Porté-Agel, F.: Wind Turbine Wake
Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model
Validation, Remote Sens., 10, 668, https://doi.org/10.3390/rs10050668, 2018. a, b, c
Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., and Larwood, S.: Unsteady aerodynamics experiment phase vi: Wind tunnel test configurations and available data campaigns, Technical report NREL/TP-500-29955, NREL, https://doi.org/10.2172/15000240, 2001. a
Herges, T. G. and Keyantuo, P.: Robust Lidar Data Processing and Quality
Control Methods Developed for the SWiFT Wake Steering Experiment, J. Phys.:
Conf. Ser., 1256, 012005, https://doi.org/10.1088/1742-6596/1256/1/012005, 2019. a
IEA – International Energy Agency: Wind Electricity, https://www.iea.org/reports/wind-electricity (last access: 15 January 2023), 2022a. a
IEA – International Energy Agency: World Energy Outlook 2022,
https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (last access: 15 January 2023), 2022b. a
Jensen, N.: A note on wind generator interaction, no. 2411 in Risø-M,
Risø National Laboratory, ISBN 87-550-0971-9, 1983. a
Jiménez, Á., Crespo, A., and Migoya, E.: Application of a LES
technique to characterize the wake deflection of a wind turbine in yaw, Wind
Energy, 13, 559–572, https://doi.org/10.1002/we.380, 2009. a, b
Keane, A.: Advancement of an analytical double-Gaussian full wind turbine wake model, Renew. Energy, 171, 687–708, https://doi.org/10.1016/j.renene.2021.02.078,
2021. a
Keane, A., Aguirre, P. E. O., Ferchland, H., Clive, P., and Gallacher, D.: An
analytical model for a full wind turbine wake, J. Phys.: Conf. Ser., 753,
032039, https://doi.org/10.1088/1742-6596/753/3/032039, 2016. a
Kocer, G., Mansour, M., Chokani, N., Abhari, R., and Müller, M.: Full-Scale Wind Turbine Near-Wake Measurements Using an Instrumented Uninhabited Aerial Vehicle, J. Sol. Energ. Eng., 133, 041011, https://doi.org/10.1115/1.4004707, 2011. a
Krogstad, P.-Å. and Adaramola, M. S.: Performance and near wake
measurements of a model horizontal axis wind turbine, Wind Energy, 15,
743–756, https://doi.org/10.1002/we.502, 2011. a, b, c
Li, Z., Pu, O., Pan, Y., Huang, B., Zhao, Z., and Wu, H.: A study on measuring wind turbine wake based on UAV anemometry system, Sustain. Energ. Technol. Assess., 53, 102537, https://doi.org/10.1016/j.seta.2022.102537, 2022. a
Lignarolo, L., Ragni, D., Krishnaswami, C., Chen, Q., Ferreira, C. S., and van Bussel, G.: Experimental analysis of the wake of a horizontal-axis
wind-turbine model, Renew. Energy, 70, 31–46, https://doi.org/10.1016/j.renene.2014.01.020, 2014. a
Lu, H. and Porté-Agel, F.: Large-eddy simulation of a very large wind
farm in a stable atmospheric boundary layer, Phys. Fluids, 23, 065101,
https://doi.org/10.1063/1.3589857, 2011. a
Machefaux, E., Larsen, G. C., Koblitz, T., Troldborg, N., Kelly, M. C.,
Chougule, A., Hansen, K. S., and Rodrigo, J. S.: An experimental and numerical study of the atmospheric stability impact on wind turbine wakes,
Wind Energy, 19, 1785–1805, https://doi.org/10.1002/we.1950, 2015. a, b, c
Maeda, T., Kamada, Y., Murata, J., Yonekura, S., Ito, T., Okawa, A., and
Kogaki, T.: Wind tunnel study on wind and turbulence intensity profiles in
wind turbine wake, J. Therm. Sci., 20, 127–132, https://doi.org/10.1007/s11630-011-0446-9, 2011. a
Magnusson, M.: Near-wake behaviour of wind turbines, J. Wind Eng. Indust. Aerodynam., 80, 147–167, https://doi.org/10.1016/s0167-6105(98)00125-1, 1999. a
Manwell, J. F.: Wind energy explained, Wiley, ISBN 0470015004, 2009. a
Mauz, M., Rautenberg, A., Platis, A., Cormier, M., and Bange, J.: First
identification and quantification of detached-tip vortices behind a wind
energy converter using fixed-wing unmanned aircraft system, Wind Energ. Sci., 4, 451–463, https://doi.org/10.5194/wes-4-451-2019, 2019. a
Mehta, D., van Zuijlen, A., Koren, B., Holierhoek, J., and Bijl, H.: Large Eddy Simulation of wind farm aerodynamics: A review, J. Wind. Eng. Indust. Aerodynam., 133, 1–17, https://doi.org/10.1016/j.jweia.2014.07.002, 2014. a
Menke, R., Vasiljević, N., Hansen, K. S., Hahmann, A. N., and Mann, J.:
Does the wind turbine wake follow the topography? A multi-lidar study in
complex terrain, Wind Energ. Sci., 3, 681–691, https://doi.org/10.5194/wes-3-681-2018, 2018. a, b
Mikkelsen, T., Angelou, N., Hansen, K., Sjöholm, M., Harris, M., Slinger, C., Hadley, P., Scullion, R., Ellis, G., and Vives, G.: A spinner-integrated wind lidar for enhanced wind turbine control, Wind Energy, 16, 625–643,
https://doi.org/10.1002/we.1564, 2012. a
Mohan, M.: Analysis of various schemes for the estimation of atmospheric
stability classification, Atmos. Environ., 32, 3775–3781, https://doi.org/10.1016/s1352-2310(98)00109-5, 1998. a
NEWA Consortium: NEWA, https://map.neweuropeanwindatlas.eu, last access: 5 January 2023. a
NREL: FLORIS, Version 2.4, Zenodo [code], https://doi.org/10.5281/zenodo.6687458, 2021. a
Odemark, Y. and Fransson, J. H. M.: The stability and development of tip and
root vortices behind a model wind turbine, Exp. Fluids, 54, 1591,
https://doi.org/10.1007/s00348-013-1591-6, 2013. a, b
Platis, A., Hundhausen, M., Lampert, A., Emeis, S., and Bange, J.: The Role of Atmospheric Stability and Turbulence in Offshore Wind-Farm Wakes in the
German Bight, Bound.-Lay. Meteorol., 182, 441–469, https://doi.org/10.1007/s10546-021-00668-4, 2021. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and
Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2019. a, b, c, d
Reuder, J., Båserud, L., Kral, S., Kumer, V., Wagenaar, J. W., and Knauer, A.: Proof of Concept for Wind Turbine Wake Investigations with the RPAS SUMO, Energ. Proced., 94, 452–461, https://doi.org/10.1016/j.egypro.2016.09.215,
2016. a
Sanderse, B., Pijl, S., and Koren, B.: Review of computational fluid dynamics
for wind turbine wake aerodynamics, Wind Energy, 14, 799–819,
https://doi.org/10.1002/we.458, 2011. a
Sherry, M., Nemes, A., Jacono, D. L., Blackburn, H. M., and Sheridan, J.: The
interaction of helical tip and root vortices in a wind turbine wake, Phys.
Fluids, 25, 117102, https://doi.org/10.1063/1.4824734, 2013. a, b, c
Simley, E., Angelou, N., Mikkelsen, T., Sjöholm, M., Mann, J., and Pao, L. Y.: Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars, J. Renew. Sustain.
Energ., 8, 013301, https://doi.org/10.1063/1.4940025, 2016. a
Thielicke, W., Hübert, W., Müller, U., Eggert, M., and Wilhelm, P.: Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer, Atmos. Meas. Tech., 14, 1303–1318,
https://doi.org/10.5194/amt-14-1303-2021, 2021. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O.,
Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki,
V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P.,
Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J.,
Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A.,
and Wiser, R.: Grand challenges in the science of wind energy, Science, 366,
eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
Veers, P., Dykes, K., Basu, S., Bianchini, A., Clifton, A., Green, P.,
Holttinen, H., Kitzing, L., Kosovic, B., Lundquist, J. K., Meyers, J., O'Malley, M., Shaw, W. J., and Straw, B.: Grand Challenges: wind energy research needs for a global energy transition, Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, 2022. a
Vermeer, L., Sørensen, J., and Crespo, A.: Wind turbine wake aerodynamics,
Prog. Aerosp. Sci., 39, 467–510, https://doi.org/10.1016/s0376-0421(03)00078-2, 2003. a, b
Wetz, T. and Wildmann, N.: Spatially distributed and simultaneous wind
measurements with a fleet of small quadrotor UAS, J. Phys.: Conf. Ser., 2265, 022086, https://doi.org/10.1088/1742-6596/2265/2/022086, 2022. a, b, c
Wetz, T., Wildmann, N., and Beyrich, F.: Distributed wind measurements with
multiple quadrotor unmanned aerial vehicles in the atmospheric boundary
layer, Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021,
2021. a
Wetz, T., Zink, J., Bange, J., and Wildmann, N.: Analyses of Spatial
Correlation and Coherence in ABL flow with a Fleet of UAS, Research Square, https://doi.org/10.21203/rs.3.rs-2033943/v1, 2022. a
Wildmann, N. and Wetz, T.: Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems, Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, 2022. a
Wildmann, N., Hofsäß, M., Weimer, F., Joos, A., and Bange, J.: MASC
– a small Remotely Piloted Aircraft (RPA) for wind energy research, Adv. Sci. Res., 11, 55–61, https://doi.org/10.5194/asr-11-55-2014, 2014. a
Wildmann, N., Bernard, S., and Bange, J.: Measuring the local wind field at an escarpment using small remotely-piloted aircraft, Renew. Energy, 103, 613–619, https://doi.org/10.1016/j.renene.2016.10.073, 2017. a
Wildmann, N., Kigle, S., and Gerz, T.: Coplanar lidar measurement of a single
wind energy converter wake in distinct atmospheric stability regimes at the
Perdigão 2017 experiment, J. Phys.: Conf. Ser., 1037, 052006,
https://doi.org/10.1088/1742-6596/1037/5/052006, 2018a. a, b
Wildmann, N., Vasiljevic, N., and Gerz, T.: Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup, Atmos. Meas. Tech., 11, 3801–3814, https://doi.org/10.5194/amt-11-3801-2018,
2018b. a
Wildmann, N., Gerz, T., and Lundquist, J. K.: Long-range Doppler lidar
measurements of wind turbine wakes and their interaction with turbulent
atmospheric boundary-layer flow at Perdigao 2017, J. Phys.: Conf. Ser., 1618,
032034, https://doi.org/10.1088/1742-6596/1618/3/032034, 2020. a, b
Wildmann, N., Hagen, M., and Gerz, T.: Enhanced resource assessment and
atmospheric monitoring of the research wind farm WiValdi, J. Phys.: Conf. Ser., 2265, 022029, https://doi.org/10.1088/1742-6596/2265/2/022029, 2022. a
Wu, Y.-T. and Porté-Agel, F.: Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study, Energies, 5, 5340–5362,
https://doi.org/10.3390/en5125340, 2012.
a, b, c, d
Yang, X., Hong, J., Barone, M., and Sotiropoulos, F.: Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines, J. Fluid Mech., 804, 90–115, https://doi.org/10.1017/jfm.2016.503, 2016. a
Zhang, W., Markfort, C. D., and Porté-Agel, F.: Near-wake flow structure
downwind of a wind turbine in a turbulent boundary layer, Exp. Fluids, 52,
1219–1235, https://doi.org/10.1007/s00348-011-1250-8, 2011. a, b, c
Short summary
In the present study, for the first time, the SWUF-3D fleet of multirotors is deployed for field measurements on an operating 2 MW wind turbine (WT) in complex terrain. The fleet of multirotors has the potential to fill the meteorological gap of observations in the near wake of WTs with high-temporal and high-spatial-resolution wind vector measurements plus temperature, humidity and pressure. The flow up- and downstream of the WT is measured simultaneously at multiple spatial positions.
In the present study, for the first time, the SWUF-3D fleet of multirotors is deployed for field...
Altmetrics
Final-revised paper
Preprint