Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-849-2023
https://doi.org/10.5194/wes-8-849-2023
Research article
 | 
31 May 2023
Research article |  | 31 May 2023

The dynamic coupling between the pulse wake mixing strategy and floating wind turbines

Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden

Related authors

CFD analysis of dynamic wind turbine airfoil characteristics in transonic flow using URANS
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-125,https://doi.org/10.5194/wes-2025-125, 2025
Preprint under review for WES
Short summary
The experimental characterisation of dynamic stall of the FFA-W3-211 wind turbine airfoil
Simone Chellini, Delphine De Tavernier, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-121,https://doi.org/10.5194/wes-2025-121, 2025
Preprint under review for WES
Short summary
COFLEX: a novel set point optimiser and feedforward–feedback control scheme for large, flexible wind turbines
Guido Lazzerini, Jacob Deleuran Grunnet, Tobias Gybel Hovgaard, Fabio Caponetti, Vasu Datta Madireddi, Delphine De Tavernier, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 1303–1327, https://doi.org/10.5194/wes-10-1303-2025,https://doi.org/10.5194/wes-10-1303-2025, 2025
Short summary
A dynamic open-source model to investigate wake dynamics in response to wind farm flow control strategies
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025,https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Control design for floating wind turbines
Amr Hegazy, Peter Naaijen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-68,https://doi.org/10.5194/wes-2025-68, 2025
Preprint under review for WES
Short summary

Cited articles

Ananthan, S. and Leishman, J. G.: Role of Filament Strain in the Free‐Vortex Modeling of Rotor Wakes, J. Am. Helicopt. Soc., 49, 176–191, https://doi.org/10.4050/JAHS.49.176, 2004. a
Astrom, K. J. and Murray, R. M.: Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, USA, ISBN 0691135762, 2008. a
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009. a
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms, J. Atmos. Ocean. Tech., 27, 1302–1317, https://doi.org/10.1175/2010JTECHA1398.1, 2010. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Download
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the optimal excitation frequency is heavily platform dependent.
Share
Altmetrics
Final-revised paper
Preprint