Articles | Volume 8, issue 6
https://doi.org/10.5194/wes-8-999-2023
https://doi.org/10.5194/wes-8-999-2023
Research article
 | 
14 Jun 2023
Research article |  | 14 Jun 2023

Vortex model of the aerodynamic wake of airborne wind energy systems

Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce

Related authors

Refining the airborne wind energy system power equations with a vortex wake model
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023,https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary
Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method
Filippo Trevisi, Iván Castro-Fernández, Gregorio Pasquinelli, Carlo Emanuele Dionigi Riboldi, and Alessandro Croce
Wind Energ. Sci., 7, 2039–2058, https://doi.org/10.5194/wes-7-2039-2022,https://doi.org/10.5194/wes-7-2039-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024,https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
A Numerical Investigation of Multirotor Systems with Vortex-Generating Modes for Regenerative Wind Energy: Validation Against Experimental Data
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simao Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-72,https://doi.org/10.5194/wes-2024-72, 2024
Revised manuscript accepted for WES
Short summary
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024,https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary

Cited articles

Akberali, A. F. K., Kheiri, M., and Bourgault, F.: Generalized aerodynamic models for crosswind kite power systems, J. Wind Eng. Indust. Aerodyn., 215, 104664, https://doi.org/10.1016/j.jweia.2021.104664, 2021. a
Anderson, J.: Fundamentals of Aerodynamics, in: 6th Edn., McGraw-Hill Education, ISBN 9781259129919, 2017. a
Archer, C. L.: An Introduction to Meteorology for Airborne Wind Energy, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer, Berlin, Heidelberg, 81–94, https://doi.org/10.1007/978-3-642-39965-7_5, 2013. a
Bauer, F., Kennel, R. M., Hackl, C. M., Campagnolo, F., Patt, M., and Schmehl, R.: Drag power kite with very high lift coefficient, Renew. Energy, 118, 290–305, https://doi.org/10.1016/j.renene.2017.10.073, 2018. a, b
Branlard, E.: Wind Turbine Aerodynamics and Vorticity-Based Methods, Springer Cham, https://doi.org/10.1007/978-3-319-55164-7, 2017. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Modeling the aerodynamic wake of airborne wind energy systems (AWESs) is crucial to properly estimating power production and to designing such systems. The velocities induced at the AWES from its own wake are studied with a model for the near wake and one for the far wake, using vortex methods. The model is validated with the lifting-line free-vortex wake method implemented in QBlade.
Altmetrics
Final-revised paper
Preprint