Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1419-2024
https://doi.org/10.5194/wes-9-1419-2024
Research article
 | 
26 Jun 2024
Research article |  | 26 Jun 2024

The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine

Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso

Related authors

Wind inflow observation from load harmonics: initial steps towards a field validation
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021,https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Field testing of a local wind inflow estimator and wake detector
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020,https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Brief communication: Wind inflow observation from load harmonics – wind tunnel validation of the rotationally symmetric formulation
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89–97, https://doi.org/10.5194/wes-4-89-2019,https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Automatic detection and correction of pitch misalignment in wind turbine rotors
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018,https://doi.org/10.5194/wes-3-791-2018, 2018
Short summary
Wind inflow observation from load harmonics
Marta Bertelè, Carlo L. Bottasso, Stefano Cacciola, Fabiano Daher Adegas, and Sara Delport
Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017,https://doi.org/10.5194/wes-2-615-2017, 2017
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions
Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen
Wind Energ. Sci., 9, 1005–1024, https://doi.org/10.5194/wes-9-1005-2024,https://doi.org/10.5194/wes-9-1005-2024, 2024
Short summary
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024,https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm
Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen
Wind Energ. Sci., 8, 1387–1402, https://doi.org/10.5194/wes-8-1387-2023,https://doi.org/10.5194/wes-8-1387-2023, 2023
Short summary

Cited articles

Bertelè, M., Bottasso, C. L., and Schreiber, J.: Wind inflow observation from load harmonics: initial steps towards a field validation, Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, 2021. a, b
Bertelè, M., Meyer, P. J., Sucameli, C., Fricke, J., Wegner, A., Gottschall, J., and Bottasso, C. L.: Figures: The rotor as a sensor – Observing shear and veer from the operational data of a large wind turbine, Zenodo [data set], https://doi.org/10.5281/zenodo.8335021, 2023. a
Bishop, C. M.: Pattern recognition and machine learning, Springer, New York, ISBN 978-0-387-31073-2, 2006. a
Bottasso, C. L. and Riboldi, C. E. D.: Estimation of wind misalignment and vertical shear from blade loads, Renew. Energ., 62, 293–302, https://doi.org/10.1016/j.renene.2013.07.021, 2014. a
Bottasso, C. L., Cacciola, S., and Schreiber, J.: Local wind speed estimation, with application to wake impingement detection, Renew. Energ., 116, 155–168, https://doi.org/10.1016/j.renene.2017.09.044, 2018. a
Download
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the rotor as a sensor concept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data. 
Altmetrics
Final-revised paper
Preprint