Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1419-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1419-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè
Wind Energy Institute, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Siemens Gamesa Renewable Energy, Beim Strohhause 17–31, 20097 Hamburg, Germany
Paul J. Meyer
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Carlo R. Sucameli
Wind Energy Institute, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Johannes Fricke
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Anna Wegner
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Julia Gottschall
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Wind Energy Institute, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Related authors
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Short summary
A previously published wind sensing method is applied to an experimental dataset obtained from a 3.5 MW turbine and a nearby hub-tall met mast. The method uses blade load harmonics to estimate rotor-equivalent shears and wind directions at the rotor disk. Results indicate the good quality of the estimated shear, both in terms of 10 min averages and of resolved time histories, and a reasonable accuracy in the estimation of the yaw misalignment.
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020, https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Short summary
This paper validates a method to estimate the vertical wind shear and detect the presence and location of an impinging wake with field data. Shear and wake awareness have multiple uses, from turbine and farm control to monitoring and forecasting.
Results indicate a very good correlation between the estimated vertical shear and the one measured by a met mast and a remarkable ability to locate and track the motion of an impinging wake on an affected rotor.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89–97, https://doi.org/10.5194/wes-4-89-2019, https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Short summary
This paper describes a new formulation for estimating the wind
inflow at the rotor disk, based on measurements of the blade loads.
The new method improves on previous formulations by exploiting the
rotational symmetry of the problem. Experimental results obtained
with an aeroelastically scaled model in a boundary layer wind
tunnel are used for validating the proposed approach.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018, https://doi.org/10.5194/wes-3-791-2018, 2018
Short summary
Short summary
This work presents a new fully automated method to correct for
pitch misalignment imbalances of wind turbine rotors. The method
has minimal requirements, as it only assumes the availability of a
sensor of sufficient accuracy and bandwidth to detect the 1P
harmonic to the desired precision and the ability to command the
pitch setting of each blade independently from the others.
Extensive numerical simulations are used to demonstrate the new
procedure.
Marta Bertelè, Carlo L. Bottasso, Stefano Cacciola, Fabiano Daher Adegas, and Sara Delport
Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, https://doi.org/10.5194/wes-2-615-2017, 2017
Short summary
Short summary
The rotor of a wind turbine is used to determine some important parameters of the wind, including the direction of the wind vector relative to the rotor disk and horizontal and vertical shears. The method works by using measurements provided by existing onboard load sensors. The observed wind characteristics can be used to implement advanced features in smart wind turbine and wind farm controllers.
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025, https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024, https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Short summary
We develop a new simple model to predict power losses incurred by a wind turbine when it yaws out of the wind. The model reveals the effects of a number of rotor design parameters and how the turbine is governed when it yaws. The model exhibits an excellent agreement with large eddy simulations and wind tunnel measurements. We showcase the capabilities of the model by deriving the power-optimal yaw strategy for a single turbine and for a cluster of wake-interacting turbines.
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024, https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Short summary
The controller of a wind turbine has an important role in regulating power production and avoiding structural failure. However, it is often designed after the rest of the turbine, and thus its potential is not fully exploited. An alternative is to design the structure and the controller simultaneously. This work develops a method to identify if a given turbine design can benefit from this new simultaneous design process. For example, a higher and cheaper turbine tower can be built this way.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Helena Canet, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci., 8, 1029–1047, https://doi.org/10.5194/wes-8-1029-2023, https://doi.org/10.5194/wes-8-1029-2023, 2023
Short summary
Short summary
We propose a new approach to design that aims at optimal trade-offs between economic and environmental goals. New environmental metrics are defined, which quantify impacts in terms of CO2-equivalent emissions produced by the turbine over its entire life cycle. For some typical onshore installations in Germany, results indicate that a 1 % increase in the cost of energy can buy about a 5 % decrease in environmental impacts: a small loss for the individual can lead to larger gains for society.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Robert Braunbehrens, Andreas Vad, and Carlo L. Bottasso
Wind Energ. Sci., 8, 691–723, https://doi.org/10.5194/wes-8-691-2023, https://doi.org/10.5194/wes-8-691-2023, 2023
Short summary
Short summary
The paper presents a new method in which wind turbines in a wind farm act as local sensors, in this way detecting the flow that develops within the power plant. Through this technique, we are able to identify effects on the flow generated by the plant itself and by the orography of the terrain. The new method not only delivers a flow model of much improved quality but can also help in understanding phenomena that drive the farm performance.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022, https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary
Short summary
A novel way of wind farm control is presented where the wake is deflected vertically to reduce interactions with downstream turbines. This is achieved by moving ballast in a floating offshore platform in order to pitch the support structure and thereby tilt the wind turbine rotor disk. The study considers the effects of this new form of wake control on the aerodynamics of the steering and wake-affected turbines, on the structure, and on the ballast motion system.
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625, https://doi.org/10.5194/wes-7-1605-2022, https://doi.org/10.5194/wes-7-1605-2022, 2022
Short summary
Short summary
This publication presents methods to improve the awareness and control of material fatigue for wind turbines. This is achieved by enhancing a sophisticated control algorithm which utilizes wind prediction information from a laser measurement device. The simulation results indicate that the novel algorithm significantly improves the economic performance of a wind turbine. This benefit is particularly high for situations when the prediction quality is low or the prediction time frame is short.
Emmanouil M. Nanos, Carlo L. Bottasso, Filippo Campagnolo, Franz Mühle, Stefano Letizia, G. Valerio Iungo, and Mario A. Rotea
Wind Energ. Sci., 7, 1263–1287, https://doi.org/10.5194/wes-7-1263-2022, https://doi.org/10.5194/wes-7-1263-2022, 2022
Short summary
Short summary
The paper describes the design of a scaled wind turbine in detail, for studying wakes and wake control applications in the known, controllable and repeatable conditions of a wind tunnel. The scaled model is characterized by conducting experiments in two wind tunnels, in different conditions, using different measurement equipment. Results are also compared to predictions obtained with models of various fidelity. The analysis indicates that the model fully satisfies the initial requirements.
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary
Short summary
Lidar-assisted control (LAC) is used to redesign the rotor and tower of three turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save
mass, increase hub height, or extend lifetime. The first two strategies yield reductions in the cost of energy only for the tower of the largest machine, while more interesting benefits are obtained for lifetime extension.
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021, https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Short summary
This paper quantifies the fidelity of the wakes generated by a small (1 m diameter) scaled wind turbine model operated in a large boundary layer wind tunnel. A detailed scaling analysis accompanied by large-eddy simulations shows that these wakes are very realistic scaled versions of the ones generated by the parent full-scale wind turbine in the field.
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Short summary
A previously published wind sensing method is applied to an experimental dataset obtained from a 3.5 MW turbine and a nearby hub-tall met mast. The method uses blade load harmonics to estimate rotor-equivalent shears and wind directions at the rotor disk. Results indicate the good quality of the estimated shear, both in terms of 10 min averages and of resolved time histories, and a reasonable accuracy in the estimation of the yaw misalignment.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1537–1550, https://doi.org/10.5194/wes-5-1537-2020, https://doi.org/10.5194/wes-5-1537-2020, 2020
Short summary
Short summary
A new method is described to identify the aerodynamic characteristics of blade airfoils directly from operational data of the turbine. Improving on a previously published approach, the present method is based on a new maximum likelihood formulation that includes errors both in the outputs and the inputs. The method is demonstrated on the identification of the polars of small-scale turbines for wind tunnel testing.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Filippo Campagnolo, Robin Weber, Johannes Schreiber, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1273–1295, https://doi.org/10.5194/wes-5-1273-2020, https://doi.org/10.5194/wes-5-1273-2020, 2020
Short summary
Short summary
The performance of an open-loop wake-steering controller is investigated with a new wind tunnel experiment. Three scaled wind turbines are placed on a large turntable and exposed to a turbulent inflow, resulting in dynamically varying wake interactions. The study highlights the importance of using a robust formulation and plant flow models of appropriate fidelity and the existence of possible margins for improvement by the use of dynamic controllers.
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020, https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Short summary
This paper validates a method to estimate the vertical wind shear and detect the presence and location of an impinging wake with field data. Shear and wake awareness have multiple uses, from turbine and farm control to monitoring and forecasting.
Results indicate a very good correlation between the estimated vertical shear and the one measured by a met mast and a remarkable ability to locate and track the motion of an impinging wake on an affected rotor.
Johannes Schreiber, Carlo L. Bottasso, Bastian Salbert, and Filippo Campagnolo
Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, https://doi.org/10.5194/wes-5-647-2020, 2020
Short summary
Short summary
The paper describes a new method that uses standard historical operational data and reconstructs the flow at the rotor disk of each turbine in a wind farm. The method is based on a baseline wind farm flow and wake model, augmented with error terms that are
learnedfrom operational data using an ad hoc system identification approach. Both wind tunnel experiments and real data from a wind farm at a complex terrain site are used to show the capabilities of the new method.
Joeri Alexis Frederik, Robin Weber, Stefano Cacciola, Filippo Campagnolo, Alessandro Croce, Carlo Bottasso, and Jan-Willem van Wingerden
Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020, https://doi.org/10.5194/wes-5-245-2020, 2020
Short summary
Short summary
The interaction between wind turbines in a wind farm through their wakes is a widely studied research area. Until recently, research was focused on finding constant turbine inputs that optimize the performance of the wind farm. However, recent studies have shown that time-varying, dynamic inputs might be more beneficial. In this paper, the validity of this approach is further investigated by implementing it in scaled wind tunnel experiments and assessing load effects, showing promising results.
Johannes Schreiber, Amr Balbaa, and Carlo L. Bottasso
Wind Energ. Sci., 5, 237–244, https://doi.org/10.5194/wes-5-237-2020, https://doi.org/10.5194/wes-5-237-2020, 2020
Short summary
Short summary
An analytical wake model with a double-Gaussian velocity distribution is used to improve on a similar formulation by Keane et al (2016). The choice of a double-Gaussian shape function is motivated by the behavior of the near-wake region that is observed in numerical simulations and experimental measurements. The model is calibrated and validated using large eddy simulations replicating scaled wind turbine experiments, yielding improved results with respect to a classical single-Gaussian profile.
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019, https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary
Short summary
The paper studies the effects of uncertainties in aeroservoelastic
wind turbine models. Uncertainties are associated with the wind
inflow characteristics and the blade surface state, and they are propagated
by means of two non-intrusive methods throughout the
aeroservoelastic model of a large conceptual offshore wind
turbine. Results are compared with a brute-force extensive Monte
Carlo sampling to assess the convergence characteristics of the
non-intrusive approaches.
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019, https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary
Short summary
The paper compares upwind and downwind three-bladed configurations
for a 10 MW wind turbine in terms of power and loads. For the
downwind case, the study also considers a load-aligned solution
with active coning. Results indicate that downwind solutions are
slightly more advantageous than upwind ones, although improvements
are small. Additionally, pre-alignment is difficult to achieve in
practice, and the active coning solution is associated with very
significant engineering challenges.
Jiangang Wang, Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 4, 71–88, https://doi.org/10.5194/wes-4-71-2019, https://doi.org/10.5194/wes-4-71-2019, 2019
Short summary
Short summary
This paper describes an LES approach for the simulation of wind
turbines and their wakes. The simulation model is used to
develop a complete digital copy of experiments performed with
scaled wind turbines in a boundary layer wind tunnel, including the
passive generation of a sheared turbulent flow. Numerical results
are compared with experimental measurements, with a good overall
matching between the two.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89–97, https://doi.org/10.5194/wes-4-89-2019, https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Short summary
This paper describes a new formulation for estimating the wind
inflow at the rotor disk, based on measurements of the blade loads.
The new method improves on previous formulations by exploiting the
rotational symmetry of the problem. Experimental results obtained
with an aeroelastically scaled model in a boundary layer wind
tunnel are used for validating the proposed approach.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018, https://doi.org/10.5194/wes-3-791-2018, 2018
Short summary
Short summary
This work presents a new fully automated method to correct for
pitch misalignment imbalances of wind turbine rotors. The method
has minimal requirements, as it only assumes the availability of a
sensor of sufficient accuracy and bandwidth to detect the 1P
harmonic to the desired precision and the ability to command the
pitch setting of each blade independently from the others.
Extensive numerical simulations are used to demonstrate the new
procedure.
Jiangang Wang, Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-47, https://doi.org/10.5194/wes-2018-47, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This paper describes a Scale Adaptive Simulation (SAS) approach for
the numerical simulation of wind turbines and their wakes. The SAS
formulation is found to be about one order of magnitude faster than
a classical LES approach. The simulation models are compared to
each other and with experimental measurements obtained with scaled
wind turbines in a boundary layer wind tunnel.
Marta Bertelè, Carlo L. Bottasso, Stefano Cacciola, Fabiano Daher Adegas, and Sara Delport
Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, https://doi.org/10.5194/wes-2-615-2017, 2017
Short summary
Short summary
The rotor of a wind turbine is used to determine some important parameters of the wind, including the direction of the wind vector relative to the rotor disk and horizontal and vertical shears. The method works by using measurements provided by existing onboard load sensors. The observed wind characteristics can be used to implement advanced features in smart wind turbine and wind farm controllers.
Carlo L. Bottasso, Alessandro Croce, Federico Gualdoni, Pierluigi Montinari, and Carlo E. D. Riboldi
Wind Energ. Sci., 1, 297–310, https://doi.org/10.5194/wes-1-297-2016, https://doi.org/10.5194/wes-1-297-2016, 2016
Short summary
Short summary
The paper discusses different concepts for reducing loads on wind turbines using movable blade tips. Passive and semi-passive tip solutions move freely in response to air load fluctuations, while in the active case an actuator drives the tip motion in response to load measurements. The various solutions are compared with a standard blade and with each other in terms of their ability to reduce both fatigue and extreme loads.
Riccardo Riva, Stefano Cacciola, and Carlo Luigi Bottasso
Wind Energ. Sci., 1, 177–203, https://doi.org/10.5194/wes-1-177-2016, https://doi.org/10.5194/wes-1-177-2016, 2016
Short summary
Short summary
This paper presents a method to assess the stability of a wind turbine. The proposed approach uses the recorded time history of the system response and fits to it a periodic reduced-order model that can handle stochastic disturbances. Stability is computed by using Floquet theory on the reduced-order model. Since the method only uses response data, it is applicable to any simulation model as well as to experimental test data. The method is compared to the well-known operational modal analysis.
Pietro Bortolotti, Carlo L. Bottasso, and Alessandro Croce
Wind Energ. Sci., 1, 71–88, https://doi.org/10.5194/wes-1-71-2016, https://doi.org/10.5194/wes-1-71-2016, 2016
Short summary
Short summary
The paper presents a new method to conduct the holistic optimization of a wind turbine. The proposed approach allows one to define the rotor radius and tower height, while simultaneously performing the detailed sizing of rotor and tower. For the rotor, the procedures perform simultaneously the design both from the aerodynamic and structural points of view. The overall optimization seeks a minimum for the cost of energy, while accounting for a wide range of user-defined design constraints.
G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, and K. Skytte
Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, https://doi.org/10.5194/wes-1-1-2016, 2016
Related subject area
Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm
Extreme coherent gusts with direction change – probabilistic model, yaw control, and wind turbine loads
A correction method for large deflections of cantilever beams with a modal approach
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024, https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
Short summary
Aeroelastic stability simulations are needed to guarantee the safety and overall robust design of wind turbines. To increase our confidence in these simulations in the future, the sensitivity of the stability analysis with respect to variability in the structural properties of the wind turbine blades is investigated. Multiple state-of-the-art tools are compared and the study shows that even though the tools predict similar stability behavior, the sensitivity might be significantly different.
Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen
Wind Energ. Sci., 9, 1005–1024, https://doi.org/10.5194/wes-9-1005-2024, https://doi.org/10.5194/wes-9-1005-2024, 2024
Short summary
Short summary
This paper experimentally validates a novel method for characterizing wind turbine dynamics based on vibration measurements. The dynamics of wind turbines can change over short time periods if the operational conditions change. In such cases, conventional methods are inadequate. The validation is performed with a controlled laboratory experiment and a full-scale wind turbine test. More accurate characterization could lead to more efficient wind turbine designs and in turn cheaper wind energy.
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Short summary
In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore wind turbine. The article present methods to obtain reduced-order models of floating wind turbines. The models are used to form a digital twin which combines measurements from the TetraSpar prototype (a full-scale floating offshore wind turbine) to estimate signals that are not typically measured.
Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen
Wind Energ. Sci., 8, 1387–1402, https://doi.org/10.5194/wes-8-1387-2023, https://doi.org/10.5194/wes-8-1387-2023, 2023
Short summary
Short summary
We present recent research on dynamically modelling wind farm wakes and integrating these enhancements into the wind farm simulator, HAWC2Farm. The simulation methodology is showcased by recreating dynamic scenarios observed in the Lillgrund offshore wind farm. We successfully recreate scenarios with turning winds, turbine shutdown events, and wake deflection events. The research provides opportunities to better identify wake interactions in wind farms, allowing for more reliable designs.
Ásta Hannesdóttir, David R. Verelst, and Albert M. Urbán
Wind Energ. Sci., 8, 231–245, https://doi.org/10.5194/wes-8-231-2023, https://doi.org/10.5194/wes-8-231-2023, 2023
Short summary
Short summary
In this work we use observations of large coherent fluctuations to define a probabilistic gust model. The gust model provides the joint description of the gust rise time, amplitude, and direction change. We perform load simulations with a coherent gust according to the wind turbine safety standard and with the probabilistic gust model. A comparison of the simulated loads shows that the loads from the probabilistic gust model can be significantly higher due to variability in the gust parameters.
Ozan Gözcü, Emre Barlas, and Suguang Dou
Wind Energ. Sci., 8, 109–124, https://doi.org/10.5194/wes-8-109-2023, https://doi.org/10.5194/wes-8-109-2023, 2023
Short summary
Short summary
This study proposes a fast correction method for modal-based reduced-order models to account for geometric nonlinearities linked to large bending deflections in cantilever beam-like engineering structures. The large deflections cause secondary motions such as axial and torsional motions when the structures go through bending deflections. The method relies on pre-computed correction terms and thus adds negligibly small extra computational cost to the time domain analyses of the dynamic response.
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022, https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Short summary
The article presents a framework to obtain the linear and nonlinear equations of motion of a multibody system including rigid and flexible bodies. The method yields compact symbolic equations of motion. The applications are many, such as time-domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, and digital twins.
Cited articles
Bertelè, M., Bottasso, C. L., and Schreiber, J.: Wind inflow observation from load harmonics: initial steps towards a field validation, Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, 2021. a, b
Bertelè, M., Meyer, P. J., Sucameli, C., Fricke, J., Wegner, A., Gottschall, J., and Bottasso, C. L.: Figures: The rotor as a sensor – Observing shear and veer from the operational data of a large wind turbine, Zenodo [data set], https://doi.org/10.5281/zenodo.8335021, 2023. a
Bishop, C. M.: Pattern recognition and machine learning, Springer, New York, ISBN 978-0-387-31073-2, 2006. a
Bottasso, C. L. and Riboldi, C. E. D.: Estimation of wind misalignment and vertical shear from blade loads, Renew. Energ., 62, 293–302, https://doi.org/10.1016/j.renene.2013.07.021, 2014. a
Bottasso, C. L., Cacciola, S., and Schreiber, J.: Local wind speed estimation, with application to wake impingement detection, Renew. Energ., 116, 155–168, https://doi.org/10.1016/j.renene.2017.09.044, 2018. a
Bromm, M., Vollmer, L., and Kühn, M.: Numerical investigation of wind turbine wake development in directionally sheared inflow, Wind Energy, 20, 381–395, https://doi.org/10.1002/we.2010, 2017. a
Burden, F. and Winkler, D.: Bayesian Regularization of Neural Networks, Humana Press, Totowa, NJ, 23–42, ISBN 978-1-60327-101-1, https://doi.org/10.1007/978-1-60327-101-1_3, 2009. a
Clifton, A., Clive, P., Gottschall, J., Schlipf, D., Simley, E., Simmons, L., Stein, D., Trabucchi, D., Vasiljevic, N., and Würth, I.: IEA Wind Task 32 Wind Lidars – Identifying and Mitigating Barriers to the Adoption of Wind Lidars, Remote Sensing, 10, 406, https://doi.org/10.3390/rs10030406, 2018. a
Coleman, R. P. and Feingold, A. M.: Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades, Technical Report, https://ntrs.nasa.gov/citations/19930092339 (last access: 21 June 2024), 1958. a
Eggleston, D. M. and Stoddard, F.: Wind turbine engineering design, Van Nostrand Reinhold, New York, https://www.osti.gov/biblio/5719832 (last access: 21 June 2024), 1987. a
Fleming, P. A., Gebraad, P. M., Lee, S., van Wingerden, J.-W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Evaluating techniques for redirecting turbine wakes using SOWFA, Renew. Energ., 70, 211–218, https://doi.org/10.1016/j.renene.2014.02.015, 2014. a
Fricke, J., Wiens, M., Requate, N., and Leimeister, M.: Python Framework for Wind Turbines Enabling Test Automation of MoWiT, Modelica Conferences, 181, 403–409, https://doi.org/10.3384/ecp21181403, 2021. a
Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant power optimization through yaw control using a parametric model for wake effects – a CFD simulation study, Wind Energy, 19, 95–114, https://doi.org/10.1002/we.1822, 2016. a
Giyanani, A., Sjöholm, M., Rolighed Thorsen, G., Schuhmacher, J., and Gottschall, J.: Wind speed reconstruction from three synchronized short-range WindScanner lidars in a large wind turbine inflow field campaign and the associated uncertainties, J. Phys. Conf. Ser., 2265, 022032, https://doi.org/10.1088/1742-6596/2265/2/022032, 2022. a
Gottschall, J., Courtney, M. S., Wagner, R., Jørgensen, H. E., and Antoniou, I.: Lidar profilers in the context of wind energy-a verification procedure for traceable measurements, Wind Energy, 15, 147–159, https://doi.org/10.1002/we.518, 2012. a
Huhn, M. L. and Gómez-Mejía, A. F.: Aeroelastic model validation with 8 MW field measurements: Influence of constrained turbulence with focus on power performance, J. Phys. Conf. Ser., 2265, 032058, https://doi.org/10.1088/1742-6596/2265/3/032058, 2022. a
Hung, L.-Y., Santos, P., and Gottschall, J.: A comprehensive procedure to process scanning lidar data for engineering wake model validation, J. Phys. Conf. Ser., 2265, 022091, https://doi.org/10.1088/1742-6596/2265/2/022091, 2022. a
Matlab: Deep Learning Toolbox, https://www.mathworks.com/help/deeplearning/ (last access: 20 July 2023), 2023. a
Meyer, P. J. and Gottschall, J.: Evaluation of the “fan scan” based on three combined nacelle lidars for advanced wind field characterisation, J. Phys. Conf. Ser., 2265, 022107, https://doi.org/10.1088/1742-6596/2265/2/022107, 2022. a, b, c
Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P., Giebel, G., Göçmen, T., and van Wingerden, J.-W.: Wind farm flow control: prospects and challenges, Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, 2022. a, b
Schreiber, J., Bottasso, C. L., and Bertelè, M.: Field testing of a local wind inflow estimator and wake detector, Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020, 2020. a, b
Soltani, M. N., Knudsen, T., Svenstrup, M., Wisniewski, R., Brath, P., Ortega, R., and Johnson, K.: Estimation of Rotor Effective Wind Speed: A Comparison, IEEE T. Control Syst. T., 21, 1155–1167, https://doi.org/10.1109/TCST.2013.2260751, 2013. a, b
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, 2016. a, b
Wegner, A., Huhn, M. L., Mechler, S., and Thomas, P.: Identification of torsional frequencies of a large rotor blade based on measurement and simulation data, J. Phys. Conf. Ser., 2265, 032021, https://doi.org/10.1088/1742-6596/2265/3/032021, 2022. a, b
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
A neural observer is used to estimate shear and veer from the operational data of a large wind...
Altmetrics
Final-revised paper
Preprint